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Executive Summary

Physiological measurements of the electrical activity of the brain may provide the
predictive information necessary for a sensitive measure of the attention state of an air-
plane pilot or air traffic controller. The biophysical mechanisms dominating the genera-
tion of electromagnetic signals in the brain are not understood. Therefore it is necessary
to have techniques for the analysis of spontaneous brain activity, as well as evoked
potentials, that will allow us to extract meaningful information from ongoing brain wave
activity without this detailed mechanistic understanding. The data processing techniques
that we review under Phase I have been developed in the past decade in the emerging
area of dynamic systems theory. The methods have been successfully used to interpret
the dynamic content of a number of irregular time series and to aid in the construction of
relatively simple mathematical descriptions of such systems as oscillating chemical reac-
tions; the dynamics of epidemics; neuronal activity in a number of animals including
simians, fresh water algae and squid giant axons; cardiac activity; and epileptic seizures
in electroencephalograms (EEG) records. Each of these applications is reviewed in the
present report.

These applications are used to demonstrate the utility of certain dynamic concepts
in the understanding of biological systems. In particular we discuss how one can inter-
pret 4periodic time series data in terms of chaotic attractors. These attractors character-
ize the dynamics of the system of interest as being deterministic, yet unpredictable. The
attractor for such a system has noninteger dimensionality in phase space. It is this
geometric structure of the attractor that leads to the observed irregular time series
behavior of the observed quantities. A great deal of space is devoted in this report to the

development of these mathematical concepts in a biomedical context.

Finally we demonstrate the feasibility of applying various new procesSing algo-
rithms to EEG time series data to determine its fractal (fractional) dimension. It is shown
that the fractal dimension tracks the various states of brain activity, having its lowest
value for deep sleep and its highest value for eyes open, awake response, with an
apparently monotonic increase with task complexity from one extreme to the other. Thus
we demonstrate that within certain limits the fractal dimension can be associated with
wakeful attentiveness and therefore the fractal dimension may be used to assess the state
of the operator in the above information rich situations, eg. pilbts, radar observers, air
traffic controllers etc.

e
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1. Introduction

The driver dozing behind the wheel of a car speeding along the highway, the
momentary lapse in concentration of the airtraffic controller, or the continuous activity of

‘an airplane pilot could all benefit from a diagnostic tuned to the activity of the brain asso-

ciated with wakeful attentiveness. As systems become more complex and operators are
required to handle ever increasing amounts of data and rapidly make decisions, the need
for such a diagnostic becomes more and more clear. Physiological measurements of the
electrical activity of the brain may well provide the predictive information necessary for
a sensitive measure of the operator state. The development of new techniques to assess
the state of the operator in real time have recently become available, so that in the near
future the capability of alerting the operator, or someone in the command structure, to the

possibility of impending performance breakdown can be provided.

The biophysical mechanisms dominating the generation and propagation of elec-
tromagnetic signals in the brain are not understood. Therefore it is necessary to have
techniques for-the analysis of spontaneous brain activity, as well as evoked potentials,
that will allow us to extract meaningful information from the ongoing brain wave activity
without this detailed mechanistic understanding. The data processing methods that we
promote and review in this paper, have been developed in the past decade in the emerg-
ing area of dynamical systems theory. The techniques have been successfully used to
interpret the dynamic content of a number of measured irregular time series, and to con-
struct relatively simple mathematical descriptions of oscillating chemical reactions
(Roux, Simoyi and Swinney, 1983), the dynamics of epidemics (Schaffer and Kott,
1985), the beating of the heart (Guevara and Glass, 1982), interspike interval distribu-
tions in single neurons (Hayashi, Ishizuka and Hirakawa, 1983), and epileptic seizures in
electroencephalograms (EEG) records (Babloyantz and Destexhe, 1986) to name a few.
Other examples will be discussed in detail subsequently [cf. Chapter 4].

The activity of brain waves is quite similar to a wide variety of other natural
phenomena that exhibit irregular and apparently unpredictable or random behavior.
Examples that immediately come to mind are the changes in the weather over a few days
time, the height of the next wave breaking on the beach as you sit in the hot sun, shiver-
ing from a cold wind blowing down your back, and the infuriating intermittency in the

time intervals between the drips from the bathroom faucet just after you crawl into bed at
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night. In some cases such as the weather, the phenomenon always appears to be random,
but in other cases such as the dripping faucet, sometimes the dripping is periodic and
other times each drip appears to be independent of the preceding one, thereby forming a
irregular sequence (Shﬁw, 1981). The formal property that these phenomena have in
common is nonlinearity, so that much of our investigation will focus on how nonlinear
models differ from linear ones. In particular we examine how simple nonlinearities gen-
erate aperiodic processes, and consequently apparently random phenomena (West, 1985).
1.1 What is Linearity?

Nonlinearity is one of those strange concepts that is defined by what it is not. As
one physicist put it, ‘‘It is like having a zoo of non-elephants.”” Thus we need to identify
clearly the properties of linearity in order to specify which property a particular nonlinear
process does not have. Consider, for example, a complicated system that consists of a
number of factors. One property of linearity is that the response of the action of each
separate factor is proportional to its value. This is the property of proportionality. A
second property is that the total response to an action is equal to the sum of the results of
the values of the separate factors. This is the property of independence, see eq. Faddeev
(1964). As an example of linearity we choose systems theory, since this discipline has
been used for a number of years in the analysis of brain wave data and in interpreting the
response of this activity to external stimulations (Basar, 1976). In the standard theory
one asserts that a process (or system) is linear if the output of an operation is directly pro-
portional to the input. The proportionality constant is a measure of the sensitivity of the
system to the input. Formally the response, R, of a physical system is linear when it is
directly proportional to the applied force F. This relation can be expressed algebraically
by the relation R = oF + P, where o and B are constants; If there is no response in the
absence of the applied force, then B = 0. In a linear system if two distinct forces F; and
F, are applied, the net response would be R = a,F; + a,F,, where o, and o, are
independent constants. If there are N independent applied forces denoted by the vector
F = (F,F,,...,Fy) then the response of the system is linear if there is a vector

a = (0,0p,...,0y) of independent constant components such that

N
R =aoF = ZajF e In this last equation, we see that the total response of the system,
]

here a scalar, is a sum of the independent applied forces F; each weighted by its own

sensitivity coefficient o;. These ideas carry over to more general systems where F is a
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generalized time dependent force vector and R is the generalized response.

As discussed by Lavrentév and Nikol’skii ( 1964) one of the most fruitful and brilli-
ant ideas of the second half of the 1600’s was the idea that the concept of a function and
the geometric representation of a line are related. Geometrically the notion of a linear
relation between two quantities implies that if a graph is constructed with the ordinate
denoting the values of one variable and the the abscissa denoting the values of the other
variables then the relation in question appears as a straight line. In systems of more than
two variables, a linear relation defines a higher order “‘flat’’ surface. For example, three
variables can be realized as a three dimensional coordinate space, and the linear relation
defines a plane in this space. One often sees this notion employed in the analysis of data
by first transforming one or more of the variables to a form in which the data is antici-
pated to lie on a straight line. Thus one often searches for a representation in which
linear ideas may be valid since the analysis of linear systems is completely understood,

whereas that for nonlinear systems of various kinds is still relatively primitive.

The two notions of linearity that we have expressed here, algebraic and geometric,
although equivalent, have quite different implications. The latter use of the idea is a
static graph of a function expressed as the geometrical locus of the points whcre coordi-
nates satisfy a linear relationship. The former expression has to do with the response of a
system to an applied force which implies that the system is dynamic, i.e., the physical
observables change over time even though the force-response relation may be indepen-
dent of time. This change of the observable in time is referred to as the evolution of the
system and for only the simplest systéms is the relation between the dependent and
independent variables a linear one. We will have ample opportunity to explore the dis-
tinction between the above static and dynamic notions of linearity. It should be men-
tioned that if the axes for the graphical display exhaust the independent variables that
describe the system, then the two interpretations dovetail.

The state of a given system is defined by a point in this latter graph, often called
either the state space or phase space of the system. As time moves on the point traces out
a curve, called an orbit as trajectory, that describes the history of the system’s evolution.
This geometrical representation of dynamics is one of the most useful tools in dynamic
systems theory for analyzing the time-dependent properties of nonlinear systems. By
nonlinear we now know that we mean the output of the system is not proportional to the
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input. One implication of this is the following: If the system is linear, then two trajec-
tories initiated at nearby points in phase space would evolve in close proximity, so that at
any point in future time the two trajectories (and therefore the states of the system they
represent) would also be near one another. If the system is nonlinear then two such tra-
jectories could diverge from one another and at subsequent times (exactly how long will
be discussed subséquently) the two trajectories would be arbitrarily far apart, i.e. the dis-
tance between the orbits does not evolve in a proportionate way. Of course this need not

necessarily happen in a nonlinear system.

The accepted criteria for understanding a given phenomena varies as one changes
from discipline to discipline since different disciplines are at different levels of scientific
maturity. In the early developmental stage of a discipline one is often satisfied with
characterizing a phenomenon be means of a detailed verbal description. This stage of
development reaches maturity when general concepts are introduced which tie together
observations by means of one or few basic principles, e.g., Darwin (1859) did this with
evolution through the introduction of: (1) the principle of universal evolution, (2) the law
of natural selection, and (3) the law of survival of the fittest. Freud (1859) did this with
human behavior through the introduction of concepts such as conversion hysteria and
neuroses. These investigators postulated casual relations using repeated observations of
the gross properties of the systems they examined. As observational techniques became
more refined additional detailed structures associated with these gross properties were
uncovered. In the examples cited the genetic structure of the DNA molecule has for
some replaced Darwin’s notion of ‘‘survival of the fittest’’ and casual relations for social
behavior are now sought at the level of biochemistry. The schism between Freud’s
vision of a grand psychoanalytic theory and micro-biology is no less great. The criteria
for understanding the later stages of development are quite different from those in the
first stage. At these ‘‘deeper’’ levels the underlying principles must be universal and tied
to the disciplines of mathematics, physics, and chemistry. Thus concepts such as energy
and entropy appear in the discussion of microbiological processes and are used to guide

the progress of research in these areas.

The mathematical models that have been developed throughout natural philosophy
have followed the paradigm of physics and chemistry. Not just in the search for basic
postulates that will be universally applicable and from which one can draw deductions,
but more restrictively at the operational level the techniques that have bcen adopted, with
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few exceptions, have been linear. One example of this, the implications of which will
prove to be quite important in physiology, has to do with the ability to isolate and meas-
ure, i.e., to operationally define, a variable. In natural philosophy this operational
definition of a variable becomes intertwined with the concept of linearity and therein lies
the problem. To unambiguously define a variable it must be measured in isolation, i.e.,
in a context in which the variable is uncoupled from the remainder of the universe. This
situation can often be achieved in the physical sciences (leaving quaritum mechanical
considerations aside), but not so for example in the social and life sciences. Thus, one
must assume that the operational definition of a variable is sufficient for the purposes of
using the concept in the formulation of a model. This assumption presumes that the
interaction of the variable with other ‘‘operationally defined’’ variables constituting the
system is sufficiently weak that for some specified conditions the interactions may be
neglected. In the physical sciences one has come to call such effects ‘‘weak interac-
tions’’ and has developed perturbation theories to describe successively stronger interac-
tions between a variable and the physical system of interest. Not only is there no a priori
reason why this should be true in general, but in point of fact there is a great deal of

experimental evidence that it is not true.

Consider the simple problem of measuring the diameter of a tube, when that tube'is
part of a complex physiological structure such as the lung or the cardiovascular system.
Classical measuring theory tells us how we should proceed. After all, the diameter of the
tube is just proportional to a standard unit of length with which the measurement is taken.
Isn’t it? The answer to this question is no. The length of a cord or the diameter of a tube
are not necessarily given by the classical result. In a number of physical and biomedical
systems there is in fact no fundamental unit of length (be it distance or time) with which
to measure the properties of the system. The experimental evidence for and implications
of this remark are presented in Chapter 2 where we introduce and discuss the fractal con-
cept (Mandelbrot, 1977, 1982; West and Goldberger, 1987).

1.2 How do nonlinearities change our view?

Mathematical models of biological phenomena and those developed for biomedical
applications have traditionally relied on the paradigm of classical physics. The potency
of this paradigm lies in the ability of physics to relate cause and effect in physical
phenomena, and thereby to make predictions. Not all natural phenomena are predictable,

however. As we mentioned earlier, weather is an example of a physical phenomena
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which remains unpredictable. Scientists believe that they understand how to construct
the basic equations of motion governing the weather, and to a greater or lesser extent
they understand how to solve these equations. But even with that the weather remains an
enigma; predictions can only be made in terms of probabilities (Lorenz). The vulnerabil-
ity of the paradigm is revealed in that these phenomena do not display a clear
cause/effect relation. A slight perturbation in the equations of motion can generate an
unpredicatably large effect. Thus we say that the underlying process is random and that
the equations of motion are stochastic. A great deal of scientific effort has gone into
making this view consistent with the idea that the random elements in the description
would disappear if sufficient information were available about the initial state of the sys-

tem, so that in principle the evolution of the system is predictable.

As Crutchfield, Farmer, Packard and Shaw (1987) point out, this viewpoint has been
altered by the discovery that simple deterministic systems with only a few degrees of
freedom can generate random behavior. They emphasize that the random aspect is fun-
damental to the system dynamics and gathering more information will not reduce the
degree of uncertainty. Randomness generated in this way is now called chaos. The dis-
tinction between the *‘traditional’’ view and the ‘‘modern’’ view of randomness is cap-

tured in the quotations from Pierre Simon de Laplace and Henri Poincaré:

Laplace, 1776

‘“The present state of the system of nature is evidently a consequence of what
it was in the preceding moment, and if we conceive of an intelligence which at a
given instant comprehends all the relations of the entities of this universe, it could
state the respective positions, motions, and general affects of all these entities at any
time in the past or future.”’

““Physical astronomy, the branch of knowledge which does the greatest honor
to the human mind, gives us an idea, albeit imperfect, of what such an intelligence
would be. The simplicity of the law by which the celestial bodies move, and the
relations of their masses and distances, permit analysis to follow their motions up to
a certain point; and in order to determine the state of the system of these great
bodies in past or future centuries, it suffices for the mathematician that their position
and their velocity be given by observation for any moment in time. Man owes that
advantage to the power of the instrument he employs, and to the smail number of
relations that it embraces in its calculations. But ignorance of the different causes
involved in the productions of events, as well as their complexity, taken together
with the imperfection of analysis, prevents our reaching the same certainty about the
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vast majority of phenomena. Thus there are things that are uncertain for us, things
more or less probable, and we seek to compensate for the impossibility of knowing
them by determining their different degrees of likelihood. So it is that we owe to
the weakness of the human mind one of the most delicate and ingenious of
mathematical theories, the science of chance or probability.”

Poincaré 1903

“A very small cause which escapes our notice determines a considerable
effect that we cannot fail to see, and then we say that the effect is due to chance. If
we knew exactly the laws of nature and the situation of the universe at the initial
moment, we could predict exactly the situation of that same universe at a succeed-
ing moment. But even if it were the case that the natural laws had no longer any
secret for us, we could still only know the initial situation approximately. If that
enabled us to predict the succeeding situation with the same approximation, that is
all we require, and we should say that the phenomenon had been predicted, that it is
governed by laws. But it is not always so; it may happen that small differences in
the initial conditions produce very great ones in the final phenomena. A small error
in the former will produce an enormous error in the latter. Prediction becomes
impossible, and we have the fortuitous phenomenon.’’

Laplace believed in strict determinism and to his mind this implied complete predic-
tability. Uncertainty for him is a consequence of imprecise knowledge, so that probabil-
ity theory is necessitated by incomplete and imperfect observations. Poincaré on the
other hand sees an intrinsic inability to make predictions due to a sensitive dependence of
the evolution of the system on the initial state of the system.

In the preceding section we introduced the notion of a phase space and a trajectory
to describe the dynamics of a system. Each choice of an initial state produces a different
trajectory. If however there is a limiting set in phase space to which all trajectories are
drawn after a sufficiently long time, we say that the system dynamics are described by an
attractor. The attractor is the geometric limiting set on which all the trajectories eventu-
ally find themselves, i.e. the set of points in phase space to which the trajectories are
attracted. Attractors come in many shapes and sizes, but they all have the property of
occupying a finite volume of phase space. As a system evolves it sweeps through the
attractor, going through some regions rather rapidly and others quite slowly, but always
staying on the attractor. Whether or not the system is chaotic is determined by how two
initially adjacent trajectories cover the attractor over time. As Poincaré stated, a smail
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change in the initial separation (error) will produce an enormous change in the final
separation (error). The question is how this separation is accomplished on an attractor of
finite size. The answer has to do with the layered structure necessary for an attractor to

be chaotic.

Réssler (1978) described chaos as resulting from the geometric operations of
stretching and folding. Two initially nearby orbits cannot rapidly separate forever on a
finite attractor, therefore the attractor must eventually fold over onto itself. Once folded
the attractor is again stretched and folded again. This process is repeated over and over _
yielding an attractor structure with an infinite number of layers to be travefsed by the
various trajectories. The infinite richness of the attractor structure affords ample oppor-
tunity for trajectories to diverge and follow increasingly different paths. The finite size
of the attractor insures that these diverging trajectories will eventually pass close to one
another again, albeit on different layers of the attractor. Crutchfield et al. (1987) visual-
ize these orbits on a chaotic attractor as being shuffled by this process, much as a deck of
cards is shuffled by a dealer. Thus the randomness of the chaotic orbits is a consequence
of this shuffling process. We will see subsequently that this process of stretching and
folding creates folds within folds ad infinitum, resulting in a fractal structure in phase
space. We discuss the fractal concept in Chapter 2; the essential fractal feature of
interest here is that the greater the magnification of a region of the attractor, the greater
the degree of detail that is revealed.

There are a number of measures of the degree of chaos of these attractors. One is its
“‘dimension’’; integer values of the dimension indicates a simple attractor, a non-integer
dimension indicates a chaotic attractor in phase space. Part of our task here is to under-
stand the various definitions of dimension and how each of them can be realized from
experimental data sets. For this reason we devote a great deal of space to a discussion of
dimension in Chapter 2. A large part of this discussion centers around static physiologi-
cal structure such as the lung which here serves as a paradigm of physiological complex-
ity. If we understand the general idea of the dimension of a static structure, it will make
the interpretation of the non-integer dimension of a dynamic process that much easier. In
particular this geometric interpretation of a fractal is important because the attractor set

in phase space is just such a static structure.

pdros.351.chapter.1.2 3-3-88



-9.-

A second measure of the degree of irregularity generated by a chaotic attractor is
the “‘entropy’’ of the motion. The entropy is interpreted by Crutchfield et al. (1987) as
the average rate of stretching and folding of the attractor, or alternatively, as the average

-rate at which information is generated. The application of the information concept in the
dynamic systems context has been championed by Shaw (1981,1984) and Nicolis
(1985,1986). One can view the preparation of the initial state of the system as initializ-
ing a certain amount of information. The more precisely the initial state can be specified,
the more information one has. This corresponds to localizing the initial state of the sys-
tem in phase space, the amount of information is inversely proportional to the volume of
state space localized by measurement. In a regular attractor, trajectories initiated in a
given local volume stay near to one another as the system evolves, so the initial informa-
tion is preserved in time and no new information is generated. Thus the initial informa-
tion can be used to predict the final state of the system. In a chaotic attractor the stretch-
ing and folding operations smear out the initial volume. thereby destroying the initial
information as the system evolves and the dynamics create new information. Thus the
initial uncertainty in the specification of the system is eventually smeared out over the
entire attractor and all predictive power is lost, ie., all causal connection between the
present and the future is lost. |

Let us denote the region of phase space as initially occupied by V; (initial volume)
and the final region by V;. The change in the observable information I is then (Shaw,
1981; Nicolis and Tsuda, 1985)

v
& = logz-VL : 1.2.1)

]
The rate of information creation or dissipation is given by

dl 1 dv

lav 2.2
&V & (12.2)

In non-chaotic systems, the sensitivity of the flow in the initial conditions grows with

time at most as a polynomial, eg., let «() be the number of distinguishable states so that
w(t) ~ t® (1.2.3)
since VetV = @y /@; we have (Shaw 1981)

d n
=z 1.2.4
dt t ( )
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Thus the rate of information generation converges to zero as ¢ —oo and the final state is
predictable from the initial information. On the other hand, in chaotic systems the sensi-

tivity of the flow on initial conditions grow exponentially with time,

w)~e™ (1.2.5)
so that
% -n . (1.2.6)

This latter system is therefore a continuous source of iﬁformation, the attractor itself gen-
erates the information independently of the initial conditions. This property of chaotic
dynamic systems was used by Nicolis and Tsuda (1985) to model cognitive systems. The
concepts from chaotic attractors are used for information processing in neurophysiology,
cognitive psychology and perception (Nicolis, 1986). To pursue these latter applications
in any detail would take up too far afield, but we will continue to mention the existence

of such applications where appropriate.

The final measure of the degree of chaos associated with an attractor with which we
will be concerned is the set of Lyapunov exponents. These exponents quantify the aver-
age exponential convergence or divergence of nearby trajectories in the phase space of
the dynamical systems. Wolf, Swift, Swinney and Vastano (1985) believe the spectrum

of Lyapunov exponents provides the most complete qualitative and quantitative charac-
terization of chaotic behavior. A system with one or more positive Lyapunov exponents
is defined to be chaotic. The local stability properties of a system are determined by its
response to perturbations; along certain directions the response can be stable whereas
along others it can be unstable. If we consider a d-dimensional sphere of initial condi-
tions and follow the evolution of this sphere in time, then in some directions the sphere
will contract, whereas in others it will expand, thereby forming a d-dimensional ellipsoid.
Thus, a d-dimensional system can be characterized by d exponents where the j*
Lyapunov exponent quantifies the expansion or contraction of the flow along the ;™
ellipSoidal principal axis. The sum of the Lyapunov exponents is the average divergence,

which for a dissipative system (possessing an attractor) must always be negative.

Consider a three dimensional phase space in which the limiting set (the attractor)
can be characterized by the triple of Lyapunov exponents (ApA2,A3). The qualitative
behavior of the attractor can be specified by determining the signs of the Lyapunov
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exponents only, ie., (signA,,signiy,signiy). As shown in Figure (1.2.1) the triple (-,-,-
corresponds to an attracting fixed point. In each of the three directions there is an
exponential contraction of trajectories, so that no matter what the initial state of the sys-
‘tem it will eventually wind up at the fixed point. This fixed point need not be the origin,
as it would be for a dissipative linear system, but can be anywhere in phase space. The
arrows shown in the figure do not necessarily represent trajectories since the fixed point
can be approached at any angle by the evolving nonlinear system. An attracting limit
cycle is denoted by (0,-,-) in which there are two contracting directions and one that is
neutrally stable. In Figure (1.2.1) we see that this attractor resembles the orbit of a har-
monic oscillator with a particular energy, but that is not the case. The orbit of a har-
monic oscillator does not attract points from off the orbit to itself. On the other hand in a
nonlinear dynamical system an orbit has a basin of attraction so that all systems whose
initial state is in the basin eventually wind up on the limit cycle. The triple (0,0,-) has
two neutral directions and one that is contracting so that the attractor is the 2-torus dep-
icted in Figure (1.2.1). An example of such a system would be two coupled harmonic
oscillators, where the two positions and two velocities would describe the dynamics. The
constant energy (no dissipation) reduces the number of variables in this coupled system
to three so that the system is described by the two constant radii and the two angles locat-
ing the trajectory on the surface of the torus. Finally (+,0,-) corresponds to.a chaotic
attractor in which the trajectories expand in one direction, are neutrally stable in another
and contracting in a third. In order for the tmjeétories to continuously expand in one
direction and yet remain on é finite attractor, the attractor must undergo stretching and
folding operations in this direction as discussed by Réssler (1978). Much more will be
said about this in Chapter 3.

It should be emphasized that the type of attractor describing a systems’ dynamics is
dependent on certain parameter values. We review the relation between parameter
values and the forms of the dynamic attractor in Chapter 3. We show how a system can
undergo transitions from simple periodic motion to unorganized chaotic dynamics. It is
therefore apparent that the Lyapunov exponent are dependent on these control parame-

ters.

pdros.351.chapter.1.2 3-3-/88




-12-

fixed point | limit cycle

(=-.- | (0,-,-)

torus strange attractor

Figure (1.2.1): Simple attractors embedded in three dimensions are depicted. The signs
of three Lyapunov characteristic exponents are also shown for each attractor.
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The notion of making a transition from periodic to chaotic dynamics lead Macky
and Glass (1977) to introduce the term dynamical disease to denote pathological states of
physiological systems over which control has been lost. Rapp, Latta, and Mees (1988) as
well as Goldberger and West (1987a) make the general observation that chaotic behavior
is not inevitably pathological. That is to say that, for some physiological processes,
chaos may be the normal state of affairs and transitions to and from steady state and
ﬁcriodic behavior may be deleterious. Experimental support for this latter point of view
will be precented herein. In particular these concepts will be used to give a modemn
interpretation to brain wave activity and to the notion of mental workload [cf. Chapter 5].

1.3 Summary

Dynamical systems theory emerged from the fusion of two classical areas of
mathematics, topology and the theory of differential equations. Its importance to the
experimental sciences lies in its capacity to quantitatively characterize complex dynami-
cal behavior. In this report we review how dynamical systems theory is applied in vari-
ous biomedical contexts. One way in which it is applied is in the construction of simple
dynamical models that give rise to solutions that resembles the time series data observed
experimentally. Another way in which it is applied is through the development of data
processing algorithms that capture the essential features of the dynamics of the system,
such as its degree of irregularity and the structure of the attractor on which the systems’
dynamics takes place. It is obvious that the theory of differential equations is useful
because it enables us to construct the dynamic equations that describe the evolution of
the biomedical system of interest. Topology is of value here because it allows us to
determine the unique geometrical properties of the resulting dynamic attractors. The
degree of irregularity or randomness of measured time series is closely related to the
geometrical structure of the underlying attractor and so we devote Chapter 2 to a new
understanding of geometry.

Euclidean geometry is concerned with the understanding of straight lines and regu-
lar forms and it is assumed that the world consists of continuous smooth curves in spaces
of integer dimension. When we look at billowing cumulus clouds, trees of all kinds,
coral formations and coastlines we observe that the notions of classical geometry are
inadequate to describe them. Detail does not become less and less important as regions
of these various structures are magnified, but perversely more and more detail is revealed
at each level of magnification. The rich texture of these structures is characteristic of
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fractals. In Chapter 2 we show that a fractal structure is not smooth and homogeneous,
and that the smaller-scale structure is similar to the large-scale form. What makes such a
structure different from what we usually experience is there is no characteristic length
scale. The more traditional concepts of scaling (Nielsen, 1984; MacDonald, 1983) are
quite familiar in biology, but the application of fractal concepts are rather new. As we
show, lungs, hearts and many other anatomical structures are fractal-like.

But it is not only static structures that have fractal properties but dynamics
processes as well. We examine how the concept of a fractal or fractional dimension can
be applied to time series resulting from physiological processes. A dynamic fractal pro-
cess is one that cannot be characterized by a single scale of time, analogous to a fractal
structure like the lung, which is shown in Chapter 2 not to have a single scale of length.
Instead, fractal processes have many component frequencies, ie. they are characterized
by a broad band spectrum. Fractal dynamics can be detected by analyzing the time series
using spectral techniques often resulting in inverse power-law spectra. This kind of spec-
trum suggests that the processes that regulate different complex physiological systems
over time are also governed by fractal scaling mechanisms (West and Goldberger, 1987).

The dynamics of biological systems are considered in Chapter 3. There are a large
number of rather sophisticated mathematical concepts that must be developed for latter
use and this is done through various worked out examples. The whole idea of modeling
physiological systems by continuous differential equations is discussed in the context of
bio-oscillators, which are nonlinear oscillators capable of spontaneous excitation, and
strange attractors, which are sets of dissipative nonlinear equations capable of generating
dperiodic time series. The distinction between limit cycle attractors and strange attrac-
tors is basic to the understanding of EEG time series data taken up in the later chapters of
the report. '

Not only continuous differential equations are of interest but so too are discrete
equations. The discrete dynamical models appear in a natural way to describe the time
evolution of biosystems in which successive time intervals are distinct, eg. changes in
population levels between successive generations. These discrete dynamical models are
referred to as mappings and may be used directly to model the evolution of a system or
they may be used in conjunction with time series data to deduce the underlying dynami-
cal structure of a biological process. As in the continuum case the discrete dynamic
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equations can have both periodic and 4periodic solutions, that is to say the maps also
generate chaos in certain parameter regimes. Since such physiological processes as the
interbeat interval of the mamallian heart can be characterized as a mapping, that is, one
beat is mapped into the next beat by the *‘cardiac map,’’ it is of interest to know how the
intervals between beats are related to the map. We discuss how a map can undergo a
sequence of period doubling bifurcations to make a transition from a periodic to a chaotic
solution. The latter solution has been described by some as the normal dynamic state of

the human heart.

As we mentioned earlier, one indicator of the qualitative dynamics of a system,
whether it is continuous or discrete, is the Lyapunov exponent. In either case its sign
determines whether nearby orbits will exponentially separate from one another in time.
In Chapter 3 we present the formal rules for calculating this exponent in both simple sys-
tems and for general N-dimensional maps. Of particular concern is how one relates the
Lyapunov exponents to the information generated by the dynamics. This question is par-
ticularly important in biological systems because it provides one of the measures of a
strange attractor. Other measures that are discussed include the power spectrum of a
time series, ie., the Fourier transform of the two-point correlation function; the correla-
tion dimension (a bound on the fractal dimension) obtained from the two-point correla-
tion function on a dynamics attractor; and the phase space portrait of the attractor recon-
structed from the data. These latter two measures are shown to be essential in the pro-
cessing of EEG time series and interpreting the underlying dynamics generating the
observed time trace.

The method of reconstructing the phase space portrait of the dynamic system using
time series data was first demonstrated by Packard, Crutchfield, Farmer and Shaw (1980,
and was an application of the embedding theorems of Whitney (1936) and Takens
(1981). Chapter 4 is devoted to the application of this technique to a number of biomedi-
cal phenomena. It has helped us to understand the dynamics of epidemics, including how
chaotic attractors can explain the observed variability in certain cases without external
fluctuations drivi'ng the system. In a similar way the excitability of neurons do not
require membrane noise in the traditional sense to account for their fluctuations, but
rather can result from chaotic response to stimulation. The first example of the applica-
tion of this technique to data was to chemical reactions, such as the Belousov-

Zhabotinskii reaction (see eg. Field, 1987) and certain enzyme reactions (Olsen and
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Degn, 1977). Finally we discuss how chaos arises in the heart, from the excitation of
aggregates of embryonic cells of chick hearts (Glass, Guevara, Shrier and Perez, 1983) to
the normal beating of the human heart (Babloyantz and Destexhe, 1988).

In Chapter 5 we use the reconstruction technique on EEG time series data to help us
understand the various states of variability that are so apparent in the human brain. In
addition the correlation dimension is used to determine the geometrical structure of the
attractor underlying the brain wave activity. First we examine normal brain wave
activity and find that one can both construct the phase space portraits of the attractors and
determine the fractional dimension of the attractors. A number 6f difficulties associated
with the data processing techniques are uncovered in these analyses and ways to improve
the efficiency of these methods are proposed. One result that clearly emerges from the
calculations is that the dimension of the cognitive attractor decreases monotonically as a

subject changes from quict, awake and eyes open to deeper stages of sleep.

On the theoretical side we discuss the model of Freeman (1987) which he developed
to describe the dynamics of the olfactory system. It is found that the basal olfactory EEG
is not sinusoidal, but is irregular and 4periodic. This intrinsic unpredictability is captured
by the model in that the solutions are chaotic attractors for certain classes of parameter
values. These theoretical results are quite in keeping with the experimental observations
of normal EEG records.

One of the more dramatic results that has been obtained in recent years is the pre-
cipitous drop in the correlation dimension of the EEG time series when an individual
undergoes an epileptic seizure. The brain’s attractor has a dimensionality on the order of
4 or 5 in deep sleep and to have the much lower dimensionality of approximatedly 2 in
the epileptic state. This sudden drop in dimensionality was successfully captured in the
Freeman model in which he calculated the EEG time series for a rat undergoing a

seizure.

It has been clearly established that the degree of complexity of the EEG time series
mcasuréd by the fractional dimension are correlated with the cognitive activity of the -
subject. Another measure of the correlation between brain wave activity and the cogni-
tive task is the evoked response potential (ERP). This characteristic of neural response to
the environment has been proposed as an indicator of mental workload, in part because it

is a noninvasive measure of cognitive information processing. We describe how the ERP
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has been used to measure the attentiveness of a subject to a prescribed task and how that
attention can be divided among several tasks. The particular ERP measure described

herein gives a quantitative indication of the mental workload associated with the tasks.

Although we did not have the data to calculate the dimensionality of such a wave form,

we were able to determine the dimension of certain other states of the brain.

We show that there is a clear progression of the dimension magnitude from quiet,
awake, eyes closed (approximately 5) to quiet, awake, eyes closed using verbal memory
(approximately 6.3). In addition to this distinct ordering of the mental task performed
and the magnitude of the dimension, there is a decrease in the variance of the dimension
as the state of the brain changes from no task to one involving cognitive activity. The
trend in these data supports the hypothesis that the dimension of the EEG time series is
closely tied to the cognitive activity of the brain. Further, the ERP results verify that the
brain wave activity provides an objective measure of attention to a task. Taken together
this would establish the feasibility of using the reconstruction technique and the correla-

tion dimension as indicators of the degree of wakeful attentiveness.
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2. PHYSIOLOGY IN FRACTAL DIMENSIONS "

Although it is our intent to understand the dynamics contained in EEG time series
data using the methods of nonlinear data analysis, we find it useful to introduce a number
of the fundamental concepts through an investigation of more familiar static physioliogi-
cal structures. This approach highlights the new insights that can be gained by the appli-
cation of such concepts as self-similarity, fractals, renormalization group relations and
power-law distributions to physiology.

The complex interrelationship between biological development, form and function
are evident in many physiological structures including the finely branched bronchial tree
and the ramified His-Purkinje conduction network of the heart. In the early part of this
century such relations were explored in exquisite detail in the seminal work of D’Arcy
Thompson (1917). It was his conviction that although biological systems evolve by
rules that may be distinct from those which govern the development of physical systems,
they cannot violate basic physical laws. This ideal of underlying physical constraints led
to the formulation of several important scaling relations in biology-describing, for exam-

ple, how proportions tend to vary as an animal grows.

Relationships that depend on scale can have profound implications for physiology.
A simple example of Thompson’s approach is provided by the application of engineering
considerations to the determination of the maximum size of terrestrial bodies (ver-
tebrates). The strength of a bone increases in direct proportion to its cross-sectional area
(the square of its linear dimension) whereas its weight increases in proportion to its
volume (the cube of its linear dimension). Thus there comes a point where a bone does
not have sufficient strength to support its own weight, as first observed by Galileo Galilei
in 1638. The point of collapse is given by the intersection of a quadratic and a cubic
curve denoting, respectively, the strength and weight of a bone. A second example,
which is actually a variant of the first, recognizes that mass increases as the cube of its
linear dimension, but the surface area increases only as the square. -According to this
principle, if one species is twice as tall as another, it is likely to be eight times heavier
but to have only four times as much surface area. This tells us immediately that the
larger plants and animals must compensate for their bulk; respiration depends on surface

“This chapter is taken largely from West and Goldberger (1987).
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area for the exchange of gases as does cooling by evaporation from the skin and nutrition
by absorption through membranes. One way to add surface to a given volume is to make
the exterior more irregular, as with branches and leaves on trees; another is to hollow out
the interior as with some cheeses. The human lung, with 300 million air sacs, approaches
the more favorable ratio of surface to volume enjoyed by our evolutionary ancestors, the

single-celled microbes.

It is at this last point that the classical concepts of scaling developed by Thompson
and other fails. They are not capable of accounting for the irregular surfaces and struc-
tures seen in hearts, lungs, intestines, and brains. The classical approach relied on the
assumption that biological processes like their physical counterparts, are continuous,
homogeneous, and regular. Observations and experiment however, suggest the opposite.
Most biological systems, and many physical ones, are discontinuous, inhomogeneous,
and irregular and are necessarily this way in order to perform a particular function. The
variable complicated structure and behavior of living systems seem as likely to be verg-
ing on chaos as converging on some regular pattern. It has long been recognized that the
characterization of these kinds of systems requires new models. In this chapter we dis-
cuss how the related concepts of fractals, nonanalytic mathematical functions, and renor-
malization group transformations provide novel approaches to the study of physiological

form and function.

Perhaps the most compelling feature of all physiological systems is their complex-
ity. Capturing the richness of physiological structure and function in a single model
presents one of the major challenges of modern biology. On a static (structural) level,
the bronchial system of the lung serves as a useful paradigm for such anatomic complex-
ity. One sees in this tree-like network a complicated hierarchy of airways, beginning
with the trachea and branching down on an increasingly smaller scale to the level of tiny
tubes called bronchioles [see Figure (2.0.1)]. We return to the pulmonary tree in consid-
erable detail subsequently, but an essential prelude to a quantitasive analysis of this kind
of complex structure is an appreciation for its qualitative features.

Any successful model of pulmonary structure must account not only for the details
of microscopic (small scale) measurements, but also for the global organization of these
smaller units. It is the macroscopic (large scale) structure we observe with the unaided

eye, and initially one is struck with at least two features of bronchial architecture. The
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Figure (2.0.1) The photograph shows a plastic cast of the human bronchial tree, from the
trachea to the terminal bronchioles. The mammalian lung, has long been a paradigm of
natural complexity, challenging scientists to reduce its structure and growth to simple
rules. [From West and Goldberger, 1987].
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first is the extreme variability of tube lengths and diameters and the second is the high
level of organization. The first of these paradoxical observations results from the fact that
the branching of a given airway is not uniform: the two tubes emerging from a given
branching vertex are not of equal length. By convention, successive bifurcations of the
bronchial tree are labeled by generation number. The first generation of tubes is
comprised of just two members, the left and right mainstem bronchi. The second genera-
tion consists of four tubes, and so forth. Clearly from one generation to the next the tubes
vary, tending to get smaller and smaller in both length and diameter. But the variability
of the lung is not restricted to comparisons between generations. As one can see, the

tubes also vary markedly in size within any given generation.

The second predominant impression of the lung which seems to contradict this ini-
tial sense of variability, is that of organization. The bronchial tree, for all its asym-
metries, is clearly constructed along some ordering principle(s). There appear to be some
pattern or patterns underlying the chaos of the multiple tube sizes. It is this paradoxical
cofnbination of variability and order which must emerge from any successful model of
bronchial architecture. Indeed, we will be forced to reject as ‘‘unphysiologic’’ any model
which fails to encompass these two features. Further, we find that the fractal concept is
quite useful in modeling the observed variability of the lung (West, Bhargava and Gold-
berger, 1986).

The question of anatomic regularity and variability is only one aspect of the general
problem of physiologic complexity. We also seek to understand certain features of
dynamical complexity, so that in addition to their static structure, the real time function-
ing of physiological systems can be explained. We postpone most of this discussion to
the next section where we consider dynamic processes in general. Measurement of phy-
siological systems under “‘free-running’’ circumstances gives rise to data sets that are
notable for their erratic variations. The statistical techniques required for the analysis of
such data sets are formidable. In dealing with healthy physiological systems, therefore,
the tradition is to restrict the experiment sufficiently so that this ‘‘noise’’ is filtered from
the data. Such carefully controlled observations, while useful in dissecting selected
aspects of physiological behavior, do have a major shortcoming: they do not allow a gen-
eral, quantitative description of healthy function with its potentially unbounded number
of degrees of freedom.
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If, for example, you feel your pulse while resting, your heart rate appears relatively
regular. However, if you were to record the activity of your heart during a vigorous
day’s activity, a far different impression of the normal heartbeat would be obtained.
Instead of exclusively observing some calm steady state, you would record periods of
sharp fluctuations interspersed between these apparently regular intervals [see Fig-
ure (2.0.2)].

Just as we suggested that any useful model of lung anatomy would have to explain
both its variability and order, we can now insist on the same criteria for judging the suc-
cess of any model of cardiovascular dynamics. Our understanding of heart rate variabil-
ity must account for the fluctuations seen in the free-running, ““non-equilibrium,’’
healthy state of the heart.

Over the past several years, in collaboration with our colleagues Drs. Ary Gold-
berger, Valmik Bhargava and Amold Mandell of the University of California, San Diego,
we have developed quantitative models which we hope will suggest a mechanism for the
“‘organized variability’’ inherent in physiological structure and function. The essential
concept underlying this kind of constrained randomness is that of scaling (Mandell,
Russo and Knapp, 1982; West, 1985). The general notion of scaling, as we have already
mentioned, is well established in biology via the work of D’Arcy Thompson and others
(Goldberger, Bhargava, West and Mahdell, 1985; West, 1988). However, the scaling
mechanism we will subsequently discuss adds to these traditional theories a few wrinkles
which are as yet unfamiliar to most physiologists. At the same time, in the non-
biological sciences, these new models of scaling have already emerged as an important
strategy in understanding a variety of complex systems. The ‘‘new scaling,”’ for exam-
Ple, appears in related guise in the description of a ubiquitous class of irregular structures
called fraczals, in the theory of critical phenomena (renormalization group theory), and in
the *‘chaotic’” dynamics of nonlinear systems.

The fractal concept developed in recent years by Mandelbrot (1977, 1982) arises in
three distinct, but related guises. The first deals with complex geometric forms. A fractal
structure is not smooth and homogeneous but rather when examined with stronger and
stronger magnifying lenses, reveals greater and greater levels of detail. Many objects in
nature, including trees, coral formations, cumulus clouds and coastlines are fractal. As
we have shown, lungs, hearts, and many other anatomic structures also possess fractal
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Figure (2.0.2): The contrast in the heart rate variability for a healthy individual between
the resting state and that of normal activity is quite dramatic. Any model that is to suc-
cessfully describe cardiovascular dynamics must be able to explain both the order of the
resting state and the variability of the active state.
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properties (West et al, 1986; Goldberger et al, 1985). A second kind of fractal has to do
with the statistical properties of a process. Here again the statistics are inhomogeneous
and irregular rather than smooth. The extreme variability in the sizes of airways
“‘within’’ a given generation of the lung is an example of such statistics (West, 1987,
1988). The final type of fractal involves time and is related to dynamic processes. An
example is the voltage measured at the myocardium emerging from the His-Purkinje con-
dition system of the heart (Goldberger et al, 1985). In each of these cases more and more
structure is revealed as the scale of observation is reduced. Furthermore, the smaller-
scale structure is similar to the larger scale form.

In applying the new scaling ideas to physiology we have seen that irregularity, when
admitted as fundamental rather than treated as a pathological deviation from some classi-
cal ideal, can paradoxically suggest a more powerful unifying theory. To describe the
advantage of the new concepts we must first review some classical theories of scaling.

2.1 The Principle of Similitude

The concept of similitude or sameness emerges in a general way as the central
theme in D’ Arcy Thompson’s studies of biological structure and function. A compelling
illustration of this principle is provided by the geometry of spiral sea shells, such as the
nautilus shown in Figure (2.1.1). Based on carefully compiled measurements, Thompson
described that the nautilus followed a pattern originally described by René Descartes in
1683 as the equiangular spiral and subsequently by Jakob Bernoulli as the logarithmic
spiral. Bernoulli, in fact, was so taken with this figure that he called it spira mirabilis
and requested that it be inscribed on his tombstone. The special feature of this type of
spiral which has intrigued mathematicians and which became the central theme of

Thompson’s biological modeling is the similitude principle. As D’Arcy Thompson
(1917) wrote: .
“In the growth of a shell, we can conceive no simpler law than this, namely
that it shall widen and lengthen in the same unvarying proportions: and this
simplest of laws is that which nature tends to follow. The shell, like the
creature within it, grows in size but does not change its shape and the
existence of this constant relativity of growth, or constant similarity of form, is
of the essence, and may be made the basis of a definition, of the equiangular
spiral.”’

This spiral-shape is not restricted to the nautilus but was described by Thompson in
many other shells. However it seems likely that the shell-like structure in the inner ear,
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Figure (2.1.1) The principle of similitude is exemplified in the logarithmic, or equiangu-
lar, spiral (in polar coordinates, logr = £0). An organism growing in such a spiral
retains its original proportions while its size increases, as can be seen in the shell of the
pearly nautilus (Naurilus Pompilius, cross section). [From West and Goldberger, 1987].
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the cochlea (from the greek word for *“snail’’), also follows the design of the logarithmic
spiral. Its relevance to physiology has never been pursued to any great extent. The abil-
ity to preserve basic proportions is remarkable; the lung, by contrast, seems riddled with

structural variations.

In 1915, two years prior to D’Arcy Thompson’s work On Growth and Form a Ger-
man physiologist, Fritz Rohrer (1975), reported his investigations on scaling in the bron-
chial tree. Rohrer reviewed the properties of the flow of a Newtonian fluid in systems of
pipes of varying lengths and cross-sectional areas arranged in cascades of different kinds.
His purpose was to determine the properties of the flow in branched systems and from
this theoretical reasoning to derive formulae for the average length and diameter of a
conduit as a function of the stage (generation) of a sequence of branches. He explored a
number of assumptions regarding the scaling properties of one branch to the next in a
sequence, for example, if there is a scaling only in length but not diameter, or if there is
equal scaling in length and diameter, and so on. Each of his assumed properties led to
different scaling relations between the flow at successive generations of the branching
system of pipes. Although much of the data could be connected with different assump-
tions, no single set of assumed properties was recognized at that time as being clearly
superior to the others (In Figure (2.1.2) is depicted an idealized version of Rohrer’s
model of the lung).

Following Robhrer, if we denote the generation index by z, let us assume that the
average length /(z) of a conduit is proportional to its average diameter d(z) so that the
volume of an airway is v(z) =l (z )dz(z Y4 o< d3(z ). Further, if the diameter scales as
d(z)=q d(z—1) between successive generations, then the volume scales as
v(z)e< q3d3(z) =--- =q32 v(0) where v(0) is the volume of the airway at the z =0 gen-
eration and q is a constant. For a homogeneous dichotomous process the volume in one
generation is divided equally between the two branches n(z) in the next generation.
Thus, v(z)=v(z—1)/2 and since in this model the total volume is assumed to be con-
stant, the number of branches must double between generations, n(z) =2n(z—-1) so that
n(z)v(z)=n(z-1)v(z—1) remains constant on the average. Therefore the constant q is

21/3

given by 1/ and the average diameter decreases exponentially with generation

number, d(z) =d(0) exp [ ~z1n(2)/3 ] where d(0) is the diameter of the trachea.
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Figure (2.1.2): In this idealized sketch the total volume of the lung is viewed as a cube.
The intent is to subdivide the cube into smaller cubes in such a way that each subcube is
supplied by an airway. In (a) the initial volume of the airway bifurcates and supplies
each side of the split cube with a new airway of volume v(1). Each of these new airways
bifurcates to supply the air into new additional cubes shown in (b) with new conduits of
volume v(2), which in turn bifurcate into airways of volume v(3) as shown in (c).
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The next major attempt to apply scaling concepts to the understanding of the
respiratory system was made in the early sixties by Ewald Weibel and Domingo Gomez
(1962). The intent of their investigation was to demonstrate the existence of fundamental

_relations between the size and number of lung structures. They considered the conduc-
tive airways as a dichotomous branching process, so that if n(z) denotes the number of
branches in the zth generation, then n(z)=qn(z-1), where q is a scaling parameter.

This functional equation relating the number of branches at successive generations has

the solution 7 (z)=¢q?, which since g° =exp(zing ) indicates that the number of airways
increases exponentially with generation number at a rate given by In(q). This solution
corresponds to having only a single conduit at the z =0 generation with all conduits in
each stage being of equal length. The average volume of the total airway is the same
between successive generations on the average, but with significant variability due to the
irregular pattern of dichotomous branching in the real lung. Weibel and Gomez com-
ment that the linear dimension of the tubes in each generation do not have a fixed value,
but rather, show a distribution about some average. This variability was neglected in
their theoretical analysis since it was the first attempt to capture the systematic variation
; in the linear dimension of the airways from generation to generation, although it was
' accounted for in their data analysis. In any event their formal results are contained in the
earlier work of Rohrer if one interprets the fixed values of lengths and diameters at each

generation used by him as the average values used by Weibel and Gomez.

Theodore Wilson (1965) subsequently offered an explanation for the exponential
decrease in the average diameter of a bronchial tube with generation number by demon-
strating that this is the functional form for which a gas of a given composition can be
provided to the alveoli with minimum metabolism or entropy production in the respira-
tory musculature. His hypothesis was that the characteristics of the design of biological
systems take values for which a given function can be accomplished with minimum total
entrophy production. This principle was articulated in great detail a decade later by
Glansdorf and Prigogine (1971) in a much broader physical context, that includes biolog-
ical systems as a special application. It is also significant that the same scaling result
obtained for the diameter of the bronchial airways was also obtained by Rashevsky

(1960) in his study of the arterial system in which he applied a somewhat related general
principle. Rather than minimum entropy production Rashevsky believed that the optimal

design to accomplish a set of prescribed functions for an organism is attained with a
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minimum of material used and energy expended. Each of these principles takes the form
of minimizing the variation of the appropriate quantity between successive generations.
The relative merits of which quantity is to be minimized will not be taken up here, but
rather we stress that the anatomic data apparently Suggest an underlying principle that
guides the morphogenesis of the bronchial tree. We will return to the question of the
possible relation between scaling and morphogenesis in due course.

Note that the analyses up to this point are consistent with the data for ten genera-
tions of the bronchial tree, However, when we examine Weibel and Gomez’s data for
the entire span of the bronchial tree data (more than twenty generations) a remarkable
Systematic deviation from the exponential behavior found above appears [see Fig-
ure (2.1.3)]. Weibel and Gomez attributed this deviation to a change in the flow mechan-
ism in the bronchial tree from that of minimum resistance to that of molecular diffusion.
We contend that the observed change in the average diameter can be explained without
recourse to such a change in flow properties. Recall that the arguments we have
reviewed neglects the variability in the linear dimensions at each generation and uses
only average values for the lengths and diameters. The distribution of linear dimensions
at each generation accounts for the deviation in the average diameter from a simple
exponential form. We find that such fluctuations in the linear dimensions are inconsistent
with simple scaling but are compatible with a more general scaling theory that satisfies a
renormalization group property (West and Goldberger, 1987). Up to now renormaliza-
tion group theory has been applied almost e;cclusively to the understanding of complex
physical processes that are dependent on many scales (Wilson, 1979). We have intro-
duced the relevance of this new scaling theory to physiologic variability.

The bridge between the classical scaling principles just outlined and the novel
renormalization theory of scaling is the theme of similitude, a notion previously encoun-
tered in the discussion of the logarithmic spiral. Intuition suggests that the type of simple
scaling function implicit in the classical notion of similitude is not adequate to describe
the full range of structural variability apparent in the lung and elsewhere in physiology.
Classical scaling principles, as noted before, are based on the notion that the underlying
process is uniform, filling an interval in a smooth continuous fashion. In the example of
the bone given by Galileo the “‘strength’’ was assumed to be uniformly distributed over
the cross-sectional area with its weight having a similar uniformity. Such assumptions
are not necessarily accurate. We know for example that the marrow of the bone is more
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porous than the periphery, so that neither the distribution of strength nor weight in a bone
is uniform. We anticipate that this nonuniformity will manifest itself through a new scal-
ing principle. The deviation of bronchial diameter measurements from the simple
exponential derived by Rohrer (1915) and later by Weibel and Gomez ( 1962), confirm
this suspicion.

The two major limitations of this classical similitude principle are: (1) it neglects
the variability in linear dimensions at each generation and (2) it assumes the system to be
homogeneous on scales smaller than some characteristic size. One sees however that the
bronchial tube dimensions clearly show prominent fluctuations around their mean values
and as you inspect the bronchial tree with greater and greater resolution, you see finer
and finer details of structure. Thus, the small scale architecture of the lung, far from
being homogeneous, is richly structured. At the same time, there is clearly a similarity
between the bronchial branchings on these smaller levels and the overall tree-like appear-

ance.

We need to make a transition, therefore, from the notion of similitude with its impli-
cit idea of homogeneity, to a more general concept which has come to be referred to as
self-similarity. Is there any known scaling mechanism which will yield self-similar
behavior but which is not dependent on a single scale factor? Clearly any theory of self-
similar scaling which is based on a multiplicity of scales would be an attractive candidate
to test physiological structures and processes which are characterized by variability and

" order.

2.2 Beyond Similitude; Self-Similarity, Fractals and Renormalization

In the late 19th century mathematicians addressed the problem of characterizing
structures that have features of self-similarity but lack a characteristic smallest scale.
Although they were not motivated by physiological concerns their work has relevance to
complex physiological structures such as the lung in that as one proceeds from the tra-
chea to the alveoli there is an average decrease in the cross-sectional area of the airway
of the 'sclf-similar branches. Thus as one traverses the bronchial tree more and more
tubes of smaller and smaller size appear. (Although there is a smallest size to the bron-
chial tubes this can be disregarded for most of the mathematical arguments to follow
since it will not strongly influence the conclusions.) At any generation we can consider

the distribution in tube sizes as constituting a mathematical set. To understand the

pdros.351.chapter.2.2 3488




-32-

bronchial tree, therefore, it is apparent that we need to have a model of a set that can be
progressively ‘‘thinned out.”” The study of such self-similar sets was initiated. in the pre-
vious century by the mathematician Georg Cantor and they now bear his name (see eg.

Jourdain, 1955). Some of his ideas are surprisingly relevant to biology.

A simple example of what has come to be called a *‘Cantor Set’’ can be constructed
starting from a line of unit length by systematically removing segments from specified
regions of the line [see Figure (2.2.1)]. We indicate the set in stages, generated by
removing the middle third of each line segment at the zsA generation to generate the more
depleted structure at the (z+1)str generation. When this procedure is taken to the limit of
infinitely large z the resulting set of points is referred to as a Cantor set. It is apparent
that the set of line segments becomes thinner and thinner as z is increased. It is impor-
tant to visualize how the remaining line segments fill the one-dimensional line more and
more sparsely with each iteration, since it is the limit distribution of points that we wiSh
to relate to certain features of physiological structure. The line segments, like the bron-
chial tube sizes, become smaller and smaller, and the set of points at the limit of this

trisecting operation is not continuous. How then can one characterize it?

In the second decade of this century Felix Hausdorff determined that one could gen-
erally classify such a set by means of a fractional dimensionality (Mandelbrot, 1977,
1982). An application of Hausdorff’s reasoning can be made to the distribution of mass
points in a volume of space of ‘‘radius’’ R, where a mass point is a convenient fiction
used to denote an indivisible unit of physical mass (or probability mass) at a mathemati-
cal point in space. Any observable quantity is then built up out of large numbers of these
idealized mass points. One way of picturing a distribution having a fractional dimen-
sionality is to imagine approaching a mass distribution from a great distance. At first, the
mass will seem to be in a single cluster. As one gets closer, it will be observed that the
cluster is really composed of smaller clusters such that upon approaching each smaller
cluster, it will seem to be composed of a set of still smaller clusters, etc. It turns out that
this apparently contrived example in fact describes the distribution of stars in the
heavens, and the Hausdorff dimension has been determined by astronomical observations
to be approximately 1.23 (Peebles, 1980). In Figure (2.2.2) we depict how the total mass
of such a cluster is related to its Hausdorff dimension.
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Figure (2.2.1) A Cantor set is generated by ““cutting-out’’ the middle third of the line
segment at each generation z. The set of points remaining in the limit z — o is called a
Cantor set. The line segments are distributed more and more sparsely with each iteration,
and the resulting set of points is both discontinuous and inhomogeneous. [From West and

Goldberger, 1987].
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The total mass M (R‘) of a distribution of mass points in Figure (2.2.2a) is propor-
tional to R®, where D is the dimension of space occupied by the masses. In the absence
of other knowledge it is usually assumed that the point masses are uniformly distributed
throughout the volume and that D is equal to the Euclidean dimension E of the space,
for example in three spatial dimensions D =E=3. Let us suppose, however, that on closer
inspection we observe that the mass points are not uniformly distributed, but instead are
clumped in distinct spheres of size R/b each having a mass that is 1/a smaller than the
total mass [cf. Figure (2.2.2b)]. Thus, what we had initially visualized as a beach ball
filled uniformly with sand turns out to resemble one filled with basketballs, each of the
basketballs being filled uniformly with sand. We now examine one of these smaller
spheres (basketballs) and find that instead of the mass points being uniformly distributed
in this reduced region it consists of still smaller spheres, each of radius R /b2 and each
having a mass 1/a2 smaller than the total mass [cf. Figure (2.2.2c)]. Now again the
image changes so that the basketballs appear to be filled with baseballs, and each base-
ball is uniformly filled with sand. If we assume that this procedure of constructing
spheres  within  spheres can  be telescoped  indefinitely we  obtain
M(R) =Nﬁ-r1 MR bN)aV 1. This relation yields a finite value for the total mass in the

limit of N' becoming infinitely large only if D =in a/ln b, where D is the Hausdorff
(fractional) dimension of the distribution of mass points dispersed throughout the topo-
logical volume of radius R. The index of the power-law distribution of mass points can
therefore be distinct from the topological dimension of the space in which the mass is
embedded, i.e., D <E =3.

In a similar way the Cantor set previously discussed can be characterized by a frac-
tional dimension D which is less than the topological dimension of the line, i.e., D < 1.
The Hausdorff dimension, or using the term introduced into the scientist’s lexicon in
recent years by Benoit Mandelbrot, the fractal dimension, can again be specified by
involving the fiction of mass points. Imagine that the mass points are initially distributed
along a line of length r. In cutting out the middle third of the line, we redistribute the
mass along the remaining two segments so that the total mass of the set remains constant.
At the next stage, where the middle third is cut out of each of the two line segments, we
again redistribute the mass so that none is lost. We now define the parameter a as the
ratio of the total mass to the mass of each segment after one trisecting operation. In this
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ragius = r

radius = r/p

Figure (2.2.2) Here we schematically represent how a given mass can be nonuniformly
distributed in a given volume in such a way that the volume occupied by the mass has a
Hausdorff dimension D = ina/ln b. The parameter b gives the scaling from the origi-
nal sphere of radius » and the parameter a gives the scaling from the original total mass
M assumed to be uniformly distributed in the volume > to that nonuniformly distributed
in the volume r?2 . (From West and Goldberger, 1987].
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example, since each segment receives half the mass of its parent, 2 =2. We also define a

- second parameter, b, as the ratio of the length of the original line to the length of each

remaining segment. Since we are cutting out the middle third 5 =3. The parameter a
gives us a comparaﬁle idea of how quickly the available space is being thinned out. The
fractal dimension D of the resulting Cantor set is the ratio of logarithms iz a / In b which
in our example is In 2/ In 3 =0.6309. Thus we see that the thinness of the distribution of
the elements of the set is dependent on three factors. First is the dimension £ of the
Euclidean space in which the set is embedded. Second is the dimension D of the set
itself. Third is the intuitive notion of a topological dimension. For example, a string has
a topological dimension of unity because it is essentially a line regardless of how one dis-
torts its shape and it is embedded in a Euclidean space of one higher dimension. If D <E ,
but D is greater than the topological dimension, then the set is said to be fractal and the

smaller the fractal dimension the more tenuous is the set of points.

There are several ways in which one can intuitively make sense of such a fractional
dimension. Note first that in this example that 1>D >0 and here E =1. This makes
sense when one thinks of the Cantor set as a physical structure with mass: it is something
less than a continuous line, yet more than a vanishing set of points. Just how much less
and more is given by the ratio /na/In b. If a were equal to b, the structure would not
seem to change no matter how much we magnify our original line; the mass would lump
together as quickly as the length scaled down, and we would see a one-dimensional
Euclidean line on every scale. If a were greater- Athan b, however, we might see a
branching or a flowering object, one that seemed to develop finer and finer structure
under magnification, we might see something like the fractal trees of Figure (2.2.3),
which burst out of a one-dimensional space but do not fill a two-dimensional Euclidean
plane. Again, the precise character depends on the value of D : the tree at the left has a
fractal dimension barely above one, and thus it is wispy and broomlike; as the dimension

decreases between one and two, the canopy of branches becomes more and more lush.

To explore the physiological implications of these concepts, we need to find out
how such a set of points can be generated, or in the more general case how a curve with a
fractal dimension can be constructed. Cantor’s original interest was in the representation
of functions by means of trigonometric series when the function is discontinuous or
divergent at a set of points. Although he became more interested in how to choose such a

set of points than in their series representation, another German mathematician, Karl
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Figure (2.2.3): Fractals are a family of shapes containing infinite levels of detail, as
observed in the Cantor set and in the infinitely clustering spheres on the facing page. In
the fractals reproduced here, the tip of each branch continues branching over many gen-
erations, on smaller and smaller scales, and each magnified, smaller-scale structure is
similar to the larger form, a property called self-similarity. As the fractal (Hausdorff)
dimension increases between one and two (left to right in the figure), the tree sprouts new
branches more and more vigorously. Fractal objects are ubiguitous in the physical world,
seen, for example, in the self-similar accretions of cumulus clouds, in turbulent flows in
fluids, and in the patterning of magnetic spins when iron reaches a critical temperature.
The organic, treelike fractals shown here bear a striking resemblance to many physiologi-
cal structures [from West and Goldberger (1987)].
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Weicrstrass, who was a teacher and later a colleague of Cantor, was keenly interested in
the theory of functions and suggested to him a particular series representation of a func-
tion that is continuous everywhere but is differentiable nowhere. For a function to be dif-

~ ferentiable, one must be able to draw a well-defined, straight-line tangent to every point

on the curve defined by the function. Functions describing curves for which this tangent
does not exist are called nonanalytic or singular and lack certain of the properties we
have come to expect from mathematical representations of physical and biological
processes. For example in the empirical science of thermodynamics the derivatives of
certain functions often determine the physical properties of materials such as how readily
they absorb heat or how easily electricity is conducted. In some circumstances, however,
the property being measured does become discontinuous as in the case of the magnetiza-
tion of a piece of iron as the temperature of the sample approaches a critical value (the
Curie temperature T,.). At this value of the temperature, the magnetization which was
zero for T>T,, jumps to a finite value and then smoothly increases with decreasing tem-
perature T. The magnetic susceptibility, the change in the magnetization induced by a
small applied field (derivative), therefore becomes singular at T=T,. Thus the magnetic
susceptibility is a nonanalytic function of the temperature. Renormalization group theory
found its first successful application in this area of phase transitions (see, eg. Wilson,
1979). We find that such nonanalytic functions, although present, are exceptional in the
physical sciences (Montroll and Shlesinger, 1982). However such singular behavior
appears to be more the rule than the exception in- social, biological and medical sciences
(Sernetz, Gellén and Hoffman, 1985; Goldberger and West, 1987b; West and Salk,
1987). Before discussing these applications we need to develop some of the basic ideas
regarding fractals and renormalization groups more completely. This we do by examin-
ing the properties of the Weierstrass function.

Weierstrass cast the argument presented earlier on the fractal distribution of mass
points into a particular mathematical form. His intent was to construct a series represen-
tation of a continuous nondifferentiable function. His function was a superposition of
harmonic terms: a fundamental with a frequency wy and unit amplitude, a second
periodic term of frequency bwy with amplitude 1/a, a third periodic term of frequency
bzmo with amplitude 1/4 2, and so on [see Figure (2.2.4)]. The resulting function is an
infinite series of periodic terms each term of which has a frequency that is a factor b
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Figuri: (2.2.4) Here we show the harmonic terms contributing to the Weierstrass func-
tion; (a) a fundamental with frequency @y and unit amplitude; (b) a second periodic term
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larger than the succeeding term and an amplitude that is a factor of 1/a smaller. These
parameters can be related to the Cantor set discussed earlier if we take 2 =62 and b =2

with 0<D <1. Thus, in giving a functional form to Cantor’s ideas, Weierstrass was the

 first scientist to construct a fractal function. Note that for this concept of a fractal func-

tion, or fractal set, there is no smallest scale. For 5> 1 in the limit of infinite N the fre-
quency wob?" goes to infinity so there is no highest frequency contribution to the Weier-
strass function. Of course if one thinks in terms of periods rather than frequencies, then

the shortest period contributing to the series is zero.

In Figure (2.2.4) we show the contributions to the Weierstrass function having a
fundamental frequency Wg, shown by curve (a). Curve (b) is the sum of the first two
terms in the series where b =8 and a =4 so that the fractal dimension is D =2/3, close to
value used in the Cantor set discussed earlier. The third curve (c) is the series with the
first 36 terms contributing.

Consider for a moment what is implied by the lack of a smallest scale in period, or
equivalently the lack of a largest scale in frequency in the Weierstrass function depicted
in the preceding figure. Imagine a continuous line on a two-dimensional Euclidean plane
and suppose the line has a fractal dimension greater than unity but less than two. How
would such a curve appear? At first glance the curve would seem to be a ragged line
with many abrupt changes in direction [cf. Figure (2.2.5)]. If we now magnify a small
region of the line, indicated by the box (a), we see that the enlarged region appears quali-
tatively the same as the original curve [cf. B]. If we now magnify a small region of this
new line, indicated by the box (b), we again obtain a curve qualitatively indistinguishable
from the first two [cf. C]. This procedure can be repeated indefinitely just as we did for
the mass distribution in space. This equivalence property is called ‘‘self-similarity’’ and
expresses the fact that the qualitative properties of the curve persist on all scales and the

measure of the degree of self-similarity is precisely the fractal or Hausdorff dimension.

The Weierstrass function can be written as the Fourier series -

F(z) = i —ITcos(b"cnoz) ,a, b>1 2.2.1)
n=0 a

which is the mathematical expression of the above discussion. If we now separate the

n =0 term from the series in (2.2.1) we can write
F(z) = i —ln- cos (b"wgz) + cos (Wgz) (2.2.2)
n=] a
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Figure (2.2.5): We reproduce here the Weierstrass curve constructed in Figure (2.2.4) in
which we are superposing smaller and smaller wiggles; so that the curve looks like the
irregular-line on a map representing a very rugged seacoast. Inset b is a magnified pic-
ture of the boxed region of inset (a). We see that the curve in (b) appears qualitatively
the same as the original curve. We now magnify the boxed region in (b) to obtain the
curve in (c) and again obtain a curve that is qualitatively indistinguishable from the first
two. This procedure can in principle be continued indefinitely because of the Hausdorff
dimension of the curve.
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so that shifting the series by unity we have
F(z) = —:—F(bz)-i-cos (@2) . (2.2.3)

Thus, if we drop the harmonic term on the right hand side of (2.2.3) we obtain a func-.
tional scaling relation for F(z). The dominant behavior of the Weierstrass function is
then expressed by the functional relation

F(z)=F(bz)la . (2.2.4)

The interpretation of this relation is that if one examines the properties of the function on
the magnified scale bz what is seen is the same function observed at the smaller scale z
but with an amplitude that is scaled by a. This is the self-similarity discussed above, an
expression of the form (2.2.4) is often called the renormalization group relation. Because
we now have a mathematical expression for this self-similarity property we can predict
how the function F (z) varies with z. The renormalization group transformation can be

solved to yield,
F(z)=A(2)z% , (2.2.5)

- where the power-law index & must be related to the two parameters in the series expan-

sion by a=In a/in b just as we found earlier. Also ihe function A (z) must be equal to

A (bz) so that it is periodic in the logarithm of the variable z with period In b. For exam-

ple, if A(y) were equal to A (y+b) then A(y) would be periodic in y with period b.
i That is the case here except that z = In Yy so théi the period of the function A (z) isin b.
The algebraic increase of F(z) with z is a consequence of the scaling property of the
function with z. Note that in addition to the fractal dimension D, also obtained from the
mass distribution argument, the Weierstrass function has this slowly varying coefficient
A(z).

- e n———

Mandelbrot’s concept of a fractal liberates our ideas of geometric forms from the
tyranny of straight lines, flat planes and regular solids and extends them into the realm of
the irregular, disjoint and singular. As rich as this notion is we require one additional

" extension into the arena of fluctuations and probability, since it is usually in terms of

averages that physiological data sets are understood. If we now interpret F (z) as a ran-
dom function, then in analogy with the Weierstrass function, we assume that the proba-
bility density satisfies a scaling relation. Thus the scaling property that is present in the
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variable F (z) for the usual Weierstrass function is transferred to the probability distribu-
tion for a stochastic (random) function. This transfer implies that if the process F (z) is a
random variable with a properly scaled probability density then the two stochastic func-
tions F (bz) and bll‘?F (z) have the same distribution (Montroll and West, 1987). This
scaling relation establishes that the irregularities of the stochastic process are generated
at each scale in a statistically identical manner. Note that for a=2 this is the well known
scaling property of Brownian motion with the square root of the ‘‘time’’ z. Thus the
self-similarity that arises in the statistical context implies that the curve (the graph of the
stochastic function F (z) versus z) is statistically equivalent at all scales rather than being
geometrically equivalent (West, 1985; Mandelbrot, 1977, 1982).

The usual Weierstrass function was shown to increase algebraically in z with the
power-law index o given by the ratio of logarithms. Therefore if either a or b is less
than unity (but not both) then the sign of & will change, that is to say that the dominant
behavior of F(z) will be an inverse power-law (1/z%) with a= In a/ In (1/b). The
prcceding interpretation of the self-similarity of a process represented by such a function
remains intact if we replace the notion of going to successively smaller scales to one of
going to successively larger scales. Thus an inverse power-law reflects a self-similarity
under contraction whereas a power-law denotes self-similarity under magnification.

2.3 Self-Similar Physiological Structures

How do the apparently abstract notions of self-similar scaling, renormalization
group theory and fractal dimensionality relate to the architecture of the lung? The classi-
cal model of bronchial diameter scaling, as we saw, predicts an exponential decay in
diameter measurements (Weibel and Gomez, 1962). However the data indicate marked
divergence of the observed anatomy from the predicted exponential scaling of the aver-
age diameter of the bronchial tubes beyond the tenth generation. These early arguments
assume the existence of a simple characteristic scale governing the decrease in bronchial
dimensions across generations. If, however, the lung is a fractal structure, no charac-
teristic smallest scale will be present. Instead there should be a distribution of scales
contributing to the variability in diameter at each generation. Based on the preceding
arguments, the subsequent dominant variation of the average bronchial diameter with
generation number would then be an inverse power law, not an exponential (West et at,
1986; West, 1987).
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~ Recall that the arguments leading to the exponential form of the dependence of the
average diameter of the bronchial tube with generation number z neglect the variability
in the linear dimensions at each generation and use only average values for the tube
lengths and diameters. The fractal assumption, on the other hand, focuses on this
neglected variability and consequently the observed deviation of the average diameter
from a simple exponential dependence on z results from the distribution in fluctuations in
the linear dimensions with generation. If we interpret the Weierstrass function F (z) as
the diameter of the bronchial tree, then the series has two distinct contributions. One is
the singular behavior of the inverse power law, which is the depexidencc of the average
bronchial diameter on generation number and the other is an anal);tic, short-scale varia-
tion of the measured diameter which is averaged out in the data. The parameter b is a
measure of the interval between scales that contribute to the variation in the diameter and
the parameter a denotes the importance of that scale relative to its adjacent scales. In the
case of the lung, in addition to the single scale assumed in the traditional models, the
fractal model implies that no single scale is dominant, but instead there is an infinite
sequence of scales each a factor of b smaller than its neighbor that contribute to the
structure. Each such factor b" is weighted by a coefficient 1/a™. This is exactly analo-
gous to the weighting of different frequencies in the Weierstrass function given above.
We chose pb =1/a where p is the probability that a scale size by is included in the

lung and satisfies the condition pb <1. Averaging this function over the small scale ana-
| lytic variations yields the average diameter d(z)=b <F (z)>, (West et al, 1986):

d(z) = A(z)/2% (2.3.1)

where a=1-1In (1/p)/In b, and it is important to recall that A (z) is a periodic function
in In z with period In b. Thus we see that the average diameter is an inverse power law
in the generation index modulated by the slowly oscillating function A (z) just as is
observed in the data [cf. Figure (2.3.1)]. In point of fact we find that the present model
provides an excellent fit to the lung data in four distinct species: dogs. rats, hamsters and
humans. The quality of this fit shown in Figure (2.3.2) strongly suggests that the func-
tional relation for F (z) captures a fundamental property of the structure of the lung that
is distinct from traditional scaling. Furthermore, the data shows the same type of scaling
for bronchial tube lengths and consequently volume. |
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Figure (2.3.1): We plot the data of Weibel and Gomez on log-log graph paper and see
that the dominant character of the functional dependence of the average bronchial diame-
ter on generation number is indeed an inverse power law rather than an exponential. A
power-law relationship between two variables appears linear when the relationship is
expressed in terms of the logarithms of the variables. Thus on log-log graph paper the
relationship yields a straight line (A). In addition to this inverse power-law dependence
of the average diameter on z there appears to be a periodic variation of the data about
this power-law behavior. This harmonic variation is not restricted to the data sets of
humans but also appears in data obtained for dogs, rats and hamsters derived from Raabe
and his colleagues. The harmonic variation is at least as pronounced in these latter
species as it is in humans (B).
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Figure (2.3.2) The variation in diameter of the bronchial airways is depicted as a func-
tion of generation numbers for rat, hamsters, and dogs. the modulated power law
observed in the data of Raabe et al. (1976) is readily captured by the function

F(z) = [Ag+A cos(2nInZ/Inb))/z* ( West et al, 1985).
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On a structural level the notion of self-similarity can also be applied to other com-
plex physiological networks. The vascular system, like the bronchial tree is a ramifying
network of tubes with multiple apparent scales sizes. Cohn (1954) introduced the notion
of an ‘‘equivalent bifurcation system.’”” The equivalent bifurcation systems were exam-
ined to determine the set of rules under which an idealized bifurcating system would
most completely fill space. The analogy was based on the assumption that the branch-
ings of the arterial system should be guided by some general morphogenetic laws ena-
bling blood to be supplied to the various parts of the body in some optimally efficient
manner. The branching rule in the mathematical system is then to be interpreted in the
physiological context. This was among the first physiological applications of the self-
similarity idea, predating the formal description of fractals.

Many other fractal-like structures in physiology are also readily identified by their
multiple levels of self-similar branching or foldings - for example, the bile duct system,
the urinary collecting tubes in the kidney, the convoluted surface of the brain, the lining
of the bowel, neural networks, and the placenta (Goldberger and West, 1987). The frac-
tal nature of the heart is particularly striking. The cardiac surface is traversed and
penetrated by a bifurcating system of coronary arteries and veins. Within its chambers,
branching strands of connective tissue, called chordae tendineae, anchor the initial and
tricuspal valves, and the electrical impulse is conducted by a fractal neural network, the
His-Purkinje system, embedded within the muscle.

Until now we have restricted our discussion to a static context, one describing the
relevance of power-law scaling and fractal dimensionality to anatomy. Such physiologic
structures are only static in that they are the ‘‘fossil remnant’’ of a morphogenetic pro-
cess. It would seem reasonable therefore to suspect that morphogenesis itself could also
be described as a fractal process, but one which is time dependent. From the viewpoint of
morphogenesis, the new scaling mechanisms have interesting implications regarding the
development of complex but stable structures using a minimal code. One of the many
challenges for future research will be unraveling the molecular mechanism whereby such

scaling information is encoded and processed.

The morphogenesis of the lung has recently been modeled by Nelson and Manches-
ter (1988) using computer simulation of growth as defined by fractal algorithms. Varia- '

tions in the limits imposed by simple constraints generate structures that are in good
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agreement, in two dimensions, with actual structural data. In Figure (2.3.3) is depicted
the computer simulation and a two-dimensional projection of an actual lung. The value
in such simulations is in part related to the fact that one can test developmental and mor-
phogenic hypothesis with varying boundary conditions including genetic effects. We
have examined the fluctuation-tolerance of the growth process of the lung and found that
its fractal nature does in fact have a great deal of survival potential (West, 1988). In par-
ticular it can be shown that fractal structures are much more error-tolerant than those pro-
duced by classical scaling. Such error tolerance is important in all aspects of biology,
including the origin of life itself (Dyson, 1985).

In addition to morphogenesis, it seems reasonable to hypothesize that multiple other
complex physiological processes would require the use of fractal concepts for their com-
plete description. What would a time-dependent fractal process look like in a physiologi-
cal context? Perhaps the most accessible way to introduce this notion is to examine a
time series, which is a traditional way of assembling biomedical data sets. In this
apprbach we examine how self-similarity can make itself manifest from one time inter-

val to the next.
2.4 Fractal Time Series

The usual method for analyzing time series data is to determine the harmonic con-
tent of the time trace (Basar, 1980). For an ordered set of frequencies one finds an
ordered set of constants (mode amplitudes), the mean square value of a given mode
amplitude being the energy contained in the time series at a particular frequency. This
procedure is often referred to as a spectral decomposition of the time series because it
extracts from the data set (time trace) the spectrum of frequencies contributing to the pro-
cess of interest. The set of moduli of the mode amplitudes determine the spectral
'strength of the time trace at the contributing frequencies, but the set of phases determine
the detailed shape of the time trace. Thus for a prescribed spectrum the time series can
represent a coherent time pulse or a random function of time and most things in-between.
It is appai'cnt that since both of these time series can have the same harmonic content it is
the distribution of phases that is the central issue in determining the shape of the time
trace. In the output of physiological systems both types of time series are obtained;

coherent pulses as well as apparently random time traces, see eg. Figure (2.4.1).
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pt = 1.77

Figure (2.3.3): A computer simulation of a fractal lung is depicted in which the boun-
dary conditions influence the morphogenesis. The boundary was derived from a chest

radiograph. The model data are in good agreement with actual structural data (from Nel-
son and Manchester, 1988).
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The dramatic difference between the extremes of coherent signals and random noise
is a manifestation of the different dynamics present in the processes generating the phase

relations between the different spectral components. The time series for the pulse is rem-

. iniscent of the QRS-complex observed in an electrocardiogram. The QRS is the represen-

tation of the depolarization of the myocardial cells. The erratic time series with its
apparently random phase, on the other hand, is reminiscent of heart rate variability in an

active healthy subject or the EEG of an alert mammalian brain.

There are a number of assumptions that form the backdrop for the spectral represen-
tation of time series analysis as it is used in the physical and biomedical sciences. The
first, and probably the most important, is that the energy content of the time series, as
measured by the length of the time trace, remains finite as time goes to infinity. The
Euclidean length of a curve consisting of a sequence of straight line segments is the root
mean square sum of these segments. Since all measures of the length of the time trace
should be equivalent for a continuous curve, the root mean square sum of the spectral
amplitudes should also be finite when the Euclidean length of the curve is finite. How-
ever, the Weierstrass function discussed earlier is too erratic to have a derivative and it is
found to have an infinite length, that is to say, that as the contributions from smaller and
smaller scales are added up it is realized that the Weierstrass function does not become
truly smooth on any scale. Thus there is no scale that yields a vanishingly small contri-
bution to the total length. This divergence must therefore be manifest in the Weierstrass

spectrum, and in fact it is, see e.g. Berry and Lewis (1980).
If we interpret the usual series for the fractal function F (z), given by (2.2.1) to be

the spectral decomposition of a time series where the previously discrete z is interpreted
as the continuous time ¢, then it represents a dynamic process that does not have a time
derivative. For a continuous time series the energy content is determined by méans of
the autocorrelation function which measures how long the influence of a given variation
in a time series persists. The function is obtained by multiplying F(t) by a displaced
copy of itself F (¢+1) and integrating ¢ over a long time interval T and dividing by T in

the limit T becomes infinite:

TN
Cw=lim L [ FOF@+Dar . 2.4.1)
T —ee T =T

One interesting aspect of such a Weierstrass function is that its autocorrelation function
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Figure (2.4.1). We select frequencies that are integer multiples of a fundamental fre-
quency g and the amplitudes decrease according to a scaling rule such that the nsh
amplitude is a factor 1/a smaller than the (n—1)sz. Then the spectrum consists of the
harmonics of @y with the nth harmonic having a spectral strength 1/a?*. The shape of a
time trace having this spectrum is quite variable. If we choose all the phases to have a
constant value, zero say, curve (A), then the time trace is given by a single pulse of
height a/(a—1). If we choose the phases to be random variables, uniformly distributed
on the interval (0,2x), curve (B), the resulting time trace appears to be a random function
of time.
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also has the form of a Weierstrass function, but with different parameters (Berry and
Lewis, 1980). We can now use the properties of this function that we developed earlier to
interpret the correlation function. The first is that since F (¢) has a modulated power law

as its dominant time behavior [see (2.2.5)], then so too does the auto-correlation function

of the time series, but with twice the power-law index, i.e.,
Cit)y=A@) 1> , ' 2.4.2)

where a=/na/lnb and A(t) is again a slowly varying periodic functionin /n ¢. The
energy spectral density of the time series is given by the Fourier Transform of the corre-

lation function,
S = [ de™Cq) . (2.4.3)

Due to the slow variation of A (#) with time the asymptotic spectrum can be estimated

using a Tauberian Theorem (see, eg. Wiener, 1963) to be
S () = Ve 2.4.4)

for small ®, which is an inverse power law in the frequency.

The above argument indicates that a fractal time series should be associated with a
power spectrum in which the higher the frequency component, the lower its power.
Furthermore, if the spectrum is represented by an inverse power law, then a plot of log
(frequency) versus log(power) should yield a straight line graph of slope —(2a+1). .Since
the frequency output of physiological systems can be a determined using Fourier

transform analysis, this scaling hypothesis can be directly tested.

Let us now return to our example of the cardiac depolarization pulse. Normally,
each heartbeat is initiated by a stimulus from pacemaker cells in the sinus node in the
right atrium. The activation wave then spreads through the atria to the AV junction. Fol-
lowing activation of the AV junction, the cardiac impulse spreads to the ventricular myo-
cardium through a ramifying network, the His-Purkinje system. This branching struc-
ture of the His-Purkinje conduction system is strongly reminiscent of the bronchial frac-
tal we discussed earlier. In both structures, one sees a self-similar tree with finely-scaled
details on a ‘‘microscopic’’ level. The spread of this depolarization wave is represented
on the body surface by the QRS-complex of the electrocardiogram. Spectral analysis of
the QRS waveform (time trace) reveals a broadband frequency spectrum with a long tail
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corresponding to an inverse power law in frequency. To explain this inverse power-law
spectrum we (Goldberger et al, 1985b) have conjectured that the repetitive branchings of
the His-Purkinje system represent a fractal set in which each generation of self-similar
segmenting imposes greater detail onto the system. At each fork in this network, see Fig-
ure (2.4.2), the cardiac impulse will activate a new pulse along each conduction branch,
thus yielding two pulses for one. In this manner, a single pulse entering the proximal
point of the His-Purkinje network with N distal branches, will generate N pulses at the
interface of the conduction network and myocardium. In a fractal network, the arrival
times of these pulses at the myocardium will not be uniform. The effect of the finely
branching fractal network will be to subtly decorrelate the individual pulses that super-
pose to form the QRS-complex. [Goldberger et al, 1985b].

As we have discussed, a fractal network is one that cannot be expressed in terms of
a single scale, so that one cannot express the overall decorrelation rate of impulses by a
single time scale. Instead one finds a distribution of decorrelation rates in the time trace
in direct correspondence to the distribution of branch lengths in the conduction network.
These rates are based on an infinite series in which each term corresponds to higher and
higher mean decorrelation rates in direct analogy with the series expansion for the Weier-
strass function. Each term therefore represents the effect of superposing finer and finer
scales onto the fractal structure of the conduction system. Each new “‘layer’’ of structure
renormalizes the distribution of mean decorrelation rates. This renormalization pro-
cedure eventually leads to a transition in the distribution of decorrelition rates to a
power-law form in the region of high decorrelation rates. The spectrum of the time trace
of the voltage-time pulses resulting from this fractal decorrelation cascade of N pulses

will also show inverse power-law behavior.

The actual data fits this model quite well [see Figure (2.4.3)]. This example, there-
fore, supports another connection between nonlinear structures, represented by a fractal
His-Purkinje system, and nonlinear function, reflected in the inverse power-law pulse
(Goldberger and West, 1987b). The next and related question is whether self-similar scal-
ing mechanisms also regulate higher order physiological phenomena which represent the

interaction of multiple processes.

To take a specific example suggested earlier, does self-similar scaling contribute to

the regulation of a complex process such as heart rate variability? One can obtain a
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Figure (2.4.2): The ventricular conduction system (His-Purkinje) appears to be a fractal-
like structure demonstrating repetitive branching on progressively smaller scales.
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Figure (2.4.3). The normal ventricular deploration (QRS) waveform (mean data of 21
healthy men) shows a broadband distribution with a long, high-frequency tail. The
straight line is the linear regression to an inverse power-law spectrum [S (w)~1/@?** ]
with a fundamental frequency of 7.81 Hz. (Goldbeger et al., 1985).
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crude measure of heart-rate variations by feeling one’s own pulse. With a casual obser-
vation, the pulse rate may feel quite even, but on closer inspection it clearly is not a
strictly regular event. For example, an increase in pulse rate is noted with inspiration (and
a decrease with expiration). These oscillations are called phasic or respiratory arrhyth-
mia. Other more subtle variations in heart rate have been detailed by means of spectral

decomposition through which oscillations at other frequencies have been correlated with

‘physiologic temperature and blood pressure control mechanisms.

However such periodic changes account for only a part of the overall fluctuations in
heart rate. To measure this variability more comprehensively, we should record the heart
beat over a long period of observation when the subject is going about his or her daily
activities, unencumbered by the restrictions of a controlled environment. This kind of
analysis was performed recently by Kobayashi and Musha (1982). They performed
power spectral analyses of heart rate time series data obtained by ambulatory healthy
subjects wearing a portable ECG device. Remarkably, the spectra for the heart rates in
the healthy subjects were very similar and of particular interest to the present analysis,
they showed an inverse power-law pattern with a superimposed peak corresponding to
the respiratory frequency. Thus, heart rate variability shows an inverse power law sug-

gesting the type of scaling behavior noted in a variety of other physiological contexts.

In the case of the QRS-complex such power-law scaling could be related to the frac-
tal geometry of the His-Purkinje system. What is the ‘‘mechanism’’ for self-similar scal-
ing in the regulation of heart rate variability? Fluctuations in heart rate are regulated by
multiple control processes including neurohumoral regulation (sympathetic and parasym-
pathetic stimulation), and local electrochemical factors. One strategy for ascertaining the
contribution of such factors would be to selectively block their effects, for example by
giving the drug propranolol to éliminate sympathetic effects or atropine to block
parasympathetic effects. Such experiments have been very helpful in assessing the direc-
tional effect of various modulators of heart rate and estimating their quantitative contri-
butions. However, this type of experimental methodology does not address the basis of
the inverse power-law spectrum observed when the entire system is functioning nor-
mally. When we pose the question: ‘“What is the mechanism of such inverse power-law
spectra?”’ we are not searching for a mechanism in the conventional sense. Tradition-
ally in physiology, the term mechanism applies to the linear interaction of two or more

(linear or nonlinear) elements which causes something to happen. Receptor-ligand
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binding, enzyme substrate interactions, and reflex-arcs are all examples of traditional
physiological mechanisms. The ‘‘mechanism’ responsible for inverse power-law
behavior in physiological systems, however, is probably not a result of a linear interac-
tive cause-effect chain, but more likely relates to the kinds of complex scaling interac-
tions we have been discussing. The inverse power-law spectrum can be viewed as the

resultant of possibly many processes interacting over a myriad of interdependent scales.

One image that suggests itself is that of a feedback system which induces a response
on time scaled a factor of b smaller than the input time. When this scaled response is fed
back as part of the input, it generates a second scaled response on a time scale that is
again a factor b smaller than the response of the preceding time scale. This is an applica-
tion of Weiner’s concept of Cybernetics (Wiener, 1968). It is a control feedback system
whose self-similar scaling property enhances the stability of the system response. In the
conventional control system the spectrum of the control mechanism is usually a smooth
function centered on a frequency @, and tapering rapidly to zero over some restricted
interval of frequency in the neighborhood of ® = . For the system envisioned here, the
feedback control yields a total spectrum which is an inverse power law in frequency due
to the lack of a highest characteristic frequency. The stability of the power-law system is
greater than that of the normal feedback system since if any one element of feedback in a
self-similar cascade is lost it would not significantly affect the overall system response
characteristics. This is true because the series of response times is lacunary, i.e., it has
gaps, rather than being continuous. 'I'hcréforc one or a few additional gaps in the series
would not change the control properties of the feedback. This is similar to the
fluctuation-tolerance we observed in the fractal structure of the lung (West, 1987;1988).

This self-similar feedback hypothesis, of course, does not specifically answer the
more basic question of how the multiple scales are actually generated. What the
hypothesis suggests is that this type of general scaling mechanism is at play. Elucidating
the basis of this generic scaling from the molecular level on up is one of the major chal-

lenges for “‘nonlinear’’ physiology.
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3. DYNAMICS IN FRACTAL DIMENSIONS

: We have focused our attention primarily on the relevance of the new scaling to
. structure and function in physiology. We now redirect that attention to the dynamics
intrinsic to biomedical systems, with special emphasis on brain wave data. In the present
chapter we attempt to present the formal ideas of nonlinear dynamic theory, and to relate
these ideas to those presented in the previous chapters. Of obvious additional interest are
the potential medical implications of these concepts. If, for example, normal function of
a variety, and perhaps all, physiological systems is characterized by inverse power-law
distributions, then a reasonable hypothesis is that at least some disease will be associated
with a loss of this normal scaling.

How will these scaling pathologies be evidenced? At present, only very preliminary
answers can be given to this important question. Mackey and Milton, (1987) and earlier
Mackey and Glass (1977) define a dynamic disease as one that occurs in an intact physio-
logical control system operating in a range of control parameters that leads to abnormal
dynamics. This is consistent with the definition used by Goldberger and West (1987a,
1985a). The signature of the abnormality is a change in the qualitative dynamics of some
observable as one or more parameters are changed. A number of disease processes
appear to be characterized by a narrowing of the frequency spectrum with a relative
decrease in higher frequency components. We have observed a similar loss of ‘‘spectral
reserve’’ in cardiac interbeat interval spectra following atropine administration to normal
subjects (Goldberger and West, 1987b). Thus, it appears that interference with the auto-

nomic nervous system leads to a loss of spectral reserve.

A related feature of the frequency spectra of perturbed physiological systems is that
not only is overall power reduced, but spectral energy may eventually become confined
to a few discrete frequency bands. The discrete (narrowband) type of frequency spec-
trum contrasts with the broadband inverse power-law spectra seen under normal condi-r
tions. The shift from a broadband to a narrowband spectrum dramatically alters the
behavior of the system. Instead of observing physiological variability, one will begin to
see highly periodic behavior. The medical literature abounds with examples of such
‘‘pathological (usually low frequency) periodicities.”” For example, low-frequency,
periodic fluctuations in heart rate and respiration may be a prominent feature in patients
with severe congestive heart failure (Goldberger, Findley, Blackburn and Mandell, 1987;
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Goldberger et al., 1986) as well as in the fetal distress syndrome (Modanlon and Free-
man, 1982). This cyclic behavior of respiration in very ill cardiac patients has actually
been known for several centuries, and is referred to as the Cheyne-Stokes breathing [see
Figure (3.0.1)]. It is also observed in obese persons, and after neural brainstem lesions.
The detection of a loss of spectral reserve and the onset of pathological periodicities in
both adults and infants at risk for sudden death promises to provide a new approach to

cardiovascular monitoring.

Furthermore, similar techniques may provide novel ways of monitodng other sys-
tems. For example an inverse power-law spectrum characterizes the apparently erratic .
daily fluctuations in counts of neutrophils (a type of blood cell) in healthy subjects. In
contrast, periodic (predictable) fluctuations in neutrophil counts have already been
detected in certain cases of chronic leukemia (Goldberger, Kabalten and Bhargava,
1986). These oscillations have periods of between 30 and 70 days depending on the
patient. This periodic behavior along with the fluctuations have been modeled using sin-
gle deterministic time delay equations (see e.g. Mackey and Milton, 1987). Such models
will be discussed more fully subsequently. Spectral analysis of fluctuations in blood
counts may provide a useful means of identifying preleukemic states and also perhaps of
following patients’ responses to chemotherapy. Finally, a loss of physiological variabil-
ity in a variety of systems appears to be characteristic of the aging process in different
organ systems (Waddington, Mac Collock and Sambrooks, 1979; Mandell, 1988; Gold-
berg, West and Bhargava, 1985a). '

Neurological disorders, including epilepsy and movement disorders, have also been
modeled as dynamic diseases in which the role of bifurcation has been examined, see
Rapp (1986) for a review. Rapp, Latta and Mees (1988) point out that in 1932 Gjessing
published the first in a series of papers establishing the correlation between intermittent
catatonia (periodic catatonia schizophrenia) and rhythmic changes in the basal metabolic
rate. These variations and the schizophrenic symptoms persisted unless treated by thy-
roxin (Donziger and Elmergreen, 1954). More biomedical eﬁamples will be discussed
subsequently after we have developed the fundamental concepts of nonlinear dynamics.

In all these areas of medical research, there is a common physiological theme.
Complexity is the salient feature shared by all the systems we have discussed - a feature
that is attracting more and more attention in physical systems as well (Goldberger and
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Figure (3.0.1): The low frequency periodic fluctuations in the heart rate are compared
with two measures of respiration in very ill cardiac patients. The phenomenon is referred

to as Cheyne-Stokes breathing.
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West, 1987a). Until today, scientists have assumed that understanding such systems in
different contexts, or even understanding various physiological systems in the same
organism, would require completely different models. The most exciting prospect for the
new dynamics is that is may provide a unifying theme to many investigations which up
to now have been considered unrelated.

3.1 Nonlinear Bio-Oscillator

In the physical sciences the dynamics of a system arcv determined by the equations
describing how the physical observables change in time. These equations are obtained
by means of some general principle, such as the conservation of energy and/or momen-
tum, applied to the system of interest. The appropriate conservation law follows from a
symmetry of the system which determines a rule by which the system evolves. If a set of
circumstances is specified by an N -component vector X = (X ,X,, .., Xy ) then in order to
predict the future state of the system from its present configuration, we must specify a
rule for the systems’ evolution. In the physical sciences the traditional strategy is to con-
struct a set of differential equations. These equations are obtained by considering each
component of the system to be a function of time, then as time changes so too do the cir-
cumstances. If in a short time interval A¢ we can associate an attendant set of changes
AX =(AX, .., AXy) as determined by AX =F (X,)At then in the limit Az —0 one

would write the ‘‘equations of motion’’
4 X(@) = FX,¢) (3.1.1)
dt

which is a statement about the evolution of the system in time. If at time ¢ =0 we specify
the components X(0), i.e., the set of circumstances characterizing the system, and if
F(X,¢) is an analytic function of its arguments, then the evolution of the system is deter-
mined by direct integration of the equations of motion away from the initial state. This is
one of the styles of thought adopted from the physical sciences into the biological and
behavioral sciences (West, 1985).

The mathematicians have categorized the solutions to such equations for the sim-
plest kinds of systems. One way to describe such systems is by means of geometric con-
structions in which the solution to an equation of the above form is depicted by a curve in
an appropriate space. The coordinate axes necessary for such a construction are the con-

tinuum “of values that the vector X(¢) can assume, each axis is associated with one
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component of the vector X. As we saw in the Introduction, this is called a phase space.
Consider a two-dimensional phase space having axes labeled by the components of the
dynamical system X = (X,X,). A point in the phase space x=(x,x,) gives a complete
characterization of the dynamical system at a point in time. As time proceeds this point
traces out a curve as shown in Figure (3.1.1), starting from the initial state [X ;(0), X ,(0)]
and proceeding to the final state [X,(z),X,(¢)] at time ¢. A trajectory or orbit in phase
space traces out the evolution of the dynamical system. Time is a parameter which
indexes each point along such a solution curve. The field of trajectories initiated from a
set of initial conditions is often referred to as the flow field. If for example the flow field
asymptotically (¢ — <o) converges to a single point in phase space, this is called a fixed
point (or focus) [cf. Figure (3.1.2)]. If the flow field converges to a single closed curve
this is called a limit cycle [cf. Figure (3.1.3)]. Such limit cycles appear as periodic

behavior in the variables of interest.

Nature abounds with rhythmic behavior that closely intertwines the physical, bio-
logical and social sciences. The spinning earth gives rise to periods of dark and light that
are apparently manifest through the circadian rhythms in biology. An incomplete list of
such daily rhythms is given by Luce (1971): the apparent frequency in fetal activity vari-
ations in body and skin temperature, the relative number of red and white cells in the
blood along with the rate at which blood will coagulate, the production and breakdown of
ATP (adenosine triphosphate), cell division in various organs, insulin secretion in the
pancreas, susceptibility to bacteria and infection, allergies and pain tolerance. No
attempt has been made here to distinguish between cause and effect; here we only stress
the observed periodicity in each of these phenomena. The shorter periods associated
with the beating of the heart and breathing, for example, are also modulated by a cir-
cadian rhythm.

There is a tendency to think of the rhythmic nature of many biological phenomena,
such as the beating of the heart, breathing, circadian rhythm, etc. as arising from the
dominance of one element of a biosystem over all the other elements. A logical conse-
quence of this mode of thought is the point of view that much of the biosystem is passive,
taking information from the dominant element and merely passing it along through the
system to the point of utilization. This perspective is being called into question more and
more by the mathematical biologists, a substantial number of which regard the rhythmic
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Figure (3.1.1): The (x,,x,) plane constitutes a two-dimensional phase space for a
dynamical system. The curve is a schematic representation of the instantaneous state of
the system, starting form the initial point labeled ¢ =0. Time (not shown) is a parameter
that locates the system along the trajectory.
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_called a flow field. Here the flow field in the neighborhood of a fixed point is shown. All
the trajectories asymptotically converge on the single point in phase space, i.e., they
reside in the basin of attraction of the focus.
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nature of biological processes to be the consequence of a dynamic interactive nonlinear
network, that is to say that biological systems are systemic (see e.g. Koslow, Mandell and
Shlesinger, 1987). The mathematical models used to support this contention were first
developed in the evolving discipline of nonlinear dynamics which is emerging as a new
branch of physics and applied mathematics. The application of some of the techniques of
nonlinear dynamics to biological oscillations is of recent origin being championed by
Winfree (1977, 1984), Glass et al. (1982, 1983), West and Goldberger (1987) among oth-
ers. The application of nonlinear equations to describe biorhythms, however, actually

dates back to the 1929 work of van der Pol and van der Mark on the relaxation oscillator.

Oscillations in biological processes do not in general follow a simple harmonic vari-
ation in either space or time. The usually situation is one in which the period of oscilla-
tion is dependent on a number of unrelated factors, some intrinsic to the system but oth-
ers external to it. Examples of these factors are the amplitude of the oscillation, the
period at which the biological unit is being driven, the internal dissipative processes and
fluctuations, to name a few. In particular, since all biological units are thermodynami-
cally open to the environment they give up energy to their surroundings in the form of
heat, i.e., they are dissipative. This regulatory mechanism helps to maintain the organ-
ism at an even temperature. Thus, if a simple harmonic oscillator is used to realistically
model an organism undergoing oscillations, it must contain dissipation. It is well known,
however, that the asymptotic trajectory of a dissipative linear oscillator is a stable fixed
point in phase space. The phase space in this case consists of the oscillator displacement
X (¢) and velocity b'¢ (¢) as depicted in Figure (3.1.4). Here the amplitude of the oscillator
excursions become smaller and smaller, due to dissipation, until eventually it comes to

rest.

If an oscillator is to remain periodic, energy must be supplied to the organism in
such a way as to balance the continuous loss of energy due to dissipation. If such a bal-
ance is maintained then the phase space orbit will become a stable limir cycle, i.e., all
orbits in-the neighborhood of this orbit will merge with it asymptotically. In Fig-
ure (3.1.5) we see that if an orbit is perturbed by an amount §;, then it will relax to the
stable limit cycle, as will the perturbation &,. However, such simple oscillators do not
have the appropriate qualitative features for describing biological systems. One of the

important properties that such a linear oscillator lacks and which is apparently ubiquitous
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Figure (3.1.4): The trajectories of a linear harmonic oscillator with dissipation are shown
in the (x,x) phase space to be spirals centered on the origin. The origin (x =0,x =0) is
the fixed point of this dynamic system.
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Figure (3.1.5): A stable limit cycle is one for which perturbations such as {; and {, relax
back to the closed cycle orbit. An unstable orbit would be one in which such perturba-
tions asymptotically exit this region of phase space.
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among biological systems is that of being self-starting (see Section 3.2). Left to itself a
bio-oscillator will spontaneously begin to oscillate without external excitation. One
observes that the self-starting or self-regulating character of bio-oscillators depends on
the intrinsic nonlinearity of the organism. Examples of systems that experimentally man-
ifest this self-regulating behavior are aggregates of embryonic cells of chick hearts
(Glass, Guevara and Perez, 1983), simian cortical neurons (Rapp, Zimmerman, Albano,
Deguzman and Greenbaum, 1985) and the giant mtemodel cell of the fresh water algae
Nitella flexilis (Hayashi, Nakao and Hirakawa, 1982) to name a few. The experimental

data from these and other examples are discussed in Chapter 4.

A nonlinear oscillator which is ‘“‘weakly’’ nonlinear is capable of oscillating at
essentially a single frequency and can produce a signal that is very low in harmonic con-
tent. Although the output from such an oscillator system is sinusoidal at a single fre-
quency, there are fundamental and crucial differences between such an oscillator and the
classical harmonic oscillator, the latter being a conservative system which is loss-free.
The basic difference is that the nonlinear oscillator can oscillate at one and only one fre-
quency and one and only one amplitude, the amplitude and frequency being dependent
on one another for a given configuration of parameters. In contrast, the amplitude and
frequency are independent in the classical linear oscillator, which can oscillate at any
arbitrary level for a given set of parameter values. These differences are illustrated in the
description of the limit cycle. The phase plane of a Hamiltonian (loss-free) oscillator is
depicted in Figure (3.1.6) together with the limit cycle for an oscillator with nonlinear
dissipation [cf. Figure (3.1.7)}. Although there are superficial resemblances between
these diagrams, there are, in fact, fundamental differences between these two physical
systems. While the linear conservative oscillator can be described by an infinite family
of closed ellipses, as shown in Figure (3.1.6), the nonlinear oscillator approaches a single
limit cycle as seen in Figure (3.1.7). This limit cycle is reached asymptotically whether
the initial conditions correspond to an infinitesimal perturbation near the origin or to a
finite perturbation far beyond the limit cycle. In either case the phase point spirals to the
limit cycle, which is a stable final state. On the other hand, the conservative linear oscil-
lator does not display this ‘“structural stability.”” Any perturbation causes it to leave one
ellipse and move to another, i.e. the orbits are neutrally stable.

In linear systems the term equilibrium is usually applied in connection with conser-
vative forces, with the point of equilibrium corresponding to the vanishing of all forces

pdros.351.chapter.3.1 3.7-88




B
F

3y ™
%

I P
Jw;' Ly

-170 -

>xXe

=N\
&

Figure (3.1.6): The (x,x) phase space is shown for a harmonic oscillator with a few typi-

cal orbits. Each ellipse has a constant energy. As the energy of the oscillator is
increased the system jumps from an ellipse of smaller diameter to one of larger diameter.
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Figure (3.1.7): A single limit cycle is depicted (solid curve). The dashed curves
corresponds to transient trajectories that asymptotically approach the limit cycle.
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with the system being at rest. The stability of such an equilibrium state is then defined by
the behavior of the system when it is subject to a small perturbation i.e., a small displace-
ment away from the equilibrium state in phase space. Roughly speaking, the terms sta-
bility and instability indicate that after the perturbation is applied the system returns to
the equilibrium state (stable) or that it continues to move away from it (unstable) or that
. it does not move (neutral stability). One of the first places where these ideas can be
found in a biological context is in Lotka’s 1925 book.

To set these ideas in a familiar context we adopt the nomenclature that a bio-
oscillator is one that is self-excitatory; regardless of the initial state of the system it will
approach a stable limit cycle providing that no pathologies arise. This idea of an active
system was originally proposed in 1928 by van der Pol and van der Mark, using a non-
linear dynamic equation of the form

d*V ()
de?

_[E2-V¥0)] -"—Vd-f‘—)afmgvm =0 (3.12)

where V() is the voltage, @y is the natural frequency, and E is an adjustable parameter.
In a linear oscillator of frequency g the coefficient of the first order time derivative
determines the stability property of the system. If the coefficient, say A, is positive then

=IM¢ g4 that the oscillator

the system is asymptotically stable, i.e., there is a damping e
approaches the fixed point V =0 in phase space. If the coefficient A is negative the solu-
tion diverges to infinity as time increases without limit (el M ). Of course this latter
behavior must terminate eventually since time divergences do not exist in physical sys-
tems, at worst stability is lost; usually other mechanisms come into play to saturate the
growth. In the nonlinear system (3.1.2) the ‘‘coefficient’’ of the ‘‘dissipative’’ term
changes sign depending on whether V) is greater than or less than E 2, This property
of (3.1.2) leads to a limit cycle behavior of the trajectory in the (v, v)-phase space for the
system [cf. Figure (3.1.7)]. The above authors envisioned the application of this limit

cycle paradigm to ‘‘explain’’ such phenomena as:

‘“‘the aeolian harp, a pneumatic hammer, the scratching noise of a knife on a
plate, the waving of a flag in the wind, the humming noise sometimes made by
a water tap, the squeaking of a door, a neon tube, the periodic recurrence of
epidemics and of economic crisis, the periodic density of an even number of
species of animals living together and the one species serving as food for the
other, the sleeping of flowers, the periodic recurrence of showers behind a
depression, the shivering from cold, menstruation and, finally, the beating of
the heart.”’
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Although the van der Pal oscillator given by (3.1.2) does not have the broad range
of application envisioned by van der Pal and van der Mark (1928,1929), their comments
reveal that they understand that these many and varied phenomena are dominated by

nonlinear mechanisms. In this sense their remarks are prophetic.
It is the last example in the above quote which we now take up in some detail.
(a) The Cardiac Oscillator*

Under physiologic conditions, the normal pacemaker of the heart is the sino-atrial
(SA) node ~ a collection of cells with spontaneous automaticity located in the right
atrium. The impulse from the SA node spreads through the atrial muscle (triggering
atrial contraction). According to the traditional viewpoint, the depolarization wave then
spreads through the atrioventricular (AV) node (junction) and down the His-Purkinje sys-
tem into the ventricles. The fundamental premise in this model is that the AV node func-
tions during normal sinus rhythm as a passive conduit for impulses originating in the SA
node, and that the intrinsic automaticity of the AV node is suppressed during sinus
rhythm. This view assumes that the AV node does not actively generate impulses or oth-
erwise influence the SA node (Vassalle, 1977).

The alternate viewpoint of van der Pol and van der Mark, and the one adopted here,
is that the AV node functions as an active oscillator and not simply as a passive resistive
element in the cardiac electrical network (Guevara and Glass, 1982; Katholi, Urtholer,
Macy and James, 1977; Ikeda, 1982; Goldberger and West, 1987b). An active role of the
AV node is supported by the clinical observation that, under certain conditions, the sinus
and AV nodes may become functionally disassociated so that independent atrial (P) and
ventricular (QRS) waves are seen on the electrocardiogram (AV disassociation). Further,
if the SA node is pharmacologically suppressed, or ablated then the AV node assumes an
active pacemaker role. The intrinsic rate of this AV nodal pacemaker is about two-thirds
of that of the SA node in dogs (Katholi et al., 1977) and possibly in man.

~In contrast to the traditional passive conduit theory of the AV node, nonlinear
analysis suggests that the SA and AV nodes may function in an active and interactive
way, with the faster firing SA node appearing to entrain the AV node (West, Goldberger,
Rovner and Bhargava, 1985). This entrainment should be bi-directional, not uni-

* This section borrows heavily from West et al., (1985).
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directional, with the SA node both influencing and being influenced by the AV node.
Previous nonlinear models (Guevara and Glass, 1982; Katholi et al, 1977; Ikeda, 1982)

of the supraventricular cardiac conduction system did not explicitly incorporate this bi-

directional type of interaction.

To simulate bi-directional SA-AV node interactions, we here adapt a computer
model of two coupled nonlinear oscillators first developed by Gollub, Brunner and
Danby (1978), to describe trajectory divergence of coupled relaxation oscillators. The
circuit includes two tunnel diodes-electronic components [cf. Figure (3.1.8)] with the
same type of nonlinear voltage-current relationships found in physiological pacemakers
with hysteresis properties [cf. Figure (3.1.9)]. The dynamics of the coupled system can
be better visualized if we consider the two branches of the circuit separately. Consider a
single oscillator in isolation, which for an appropriate choice of V and resistance Ry, an
instability drives the circuit into oscillations in which the loop indicted in Figure (3.1.9)
is continually traversed in a period of order L/R;. The diode current I, (in this case
Ip, =1,) then has the form of a rising exponential for low voltage (V) and descending

exponential for high voltage (V). The voltage switches between these high and low
valves when Ip attains the threshold values /;, or I;. The parameter values (L;/R;) of

each of the isolated oscillators are set to take into account the intrinsic difference in rate
between the two pacemakers (AV/SA = 2/3).

The two oscillators are coupled together by the conductances G.=1/R. and
G =1/R. The state of the circuit is defined by a point in the four-dimensional phase
space with coordinate axes (Ip,/p,, Vpy, Vpo). The coupling results in a voltage drop
(Vp1—Vp3) across R, producing a current through each diode dependent on this vol-
tage drop, and can result in induced switching of one oscillator by the other. The time
rates of change in the current through the two diode branches of the circuit are deter-
mined by Kirchhoff’s laws:

#

dl(z)

Ly—— +® +R) () +RyTy(r) = Vo=Vp, (3.13)
dly(1)

L2 ar +(R +R2)12(I)+R111(t) = VO—VDz (3.14)

and
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Figure (3.1.8) Analog circuit described by Equations (3.1.3) and (3.1.4) with tunnel
diodes, resistors and inductors. The overall voltage is provided by the'batter V, with the

total current I. (From West et al., 1985)
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Figure (3.1.9): A typical voltage response curve across a diode is shown. The highest
current is /y, the lowest current is /; , the highest voltage is V; and the lowest voltage is
V; . The arrows indicate how the diode operation jumps discontinuously to Vy at con-

stant /;, and to V at constant /] .
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ID] = 11+IC (3.1.5)
IDZ = IZ—IC (3.1.6)
Ic = (VDZ'—VDI)GC . (3.1.7)

Gollub, Romer and Socolar (1980) approximated the current-voltage characteristics of
the diode [cf. Figure (3.1.9)] to be rectangular, so that Vp; =V, (a constant) as the
current increases from J; to Iy and V= Vy (a constant) as the current decreases from
Iy back to I; . However, they include the V; and Vy the voltage drop across the diode
caused by the coupling current /,.:

Vy, =|I.Rp| , Vy =045V —|I.Rp| (3.1.8)
where the diode resistance R is taken to be 5 Q.

The equations (3.1.3) and (3.1.4) constitute a coupled feedback system through the
I,-dependence of the I | equation and the /,-dependence of the I ,-equation . The two
oscillators are linearly coupled by means of the resistors R and R,, and each one is

driven by the voltage difference between the source and that dropped across the diode

| introducing the anharmonic effect of the current-voltage response curve [cf. Figure

(3.1.9)]. Because the tunnel diodes are hysteretic (nonlinear) devices, as the current in
one of them increases, the voltage across it remains nearly the same (V) until the
current reaches I, at which time the voltage suddenly switches to Vy (>V). At this
point the current begins to decrease agaJ:n with little or no change in the voltage until the
current reaches the value I, at which point the voltage switches to V. The cycle then
repeats itself. The cycling of the coupled system is depicted in Figure (3.1.10) which
shows that the sharply angled regions of the uncoupled hysteresis loops have been
smoothed out by means of the couping. Here we use the model of Gollub et al. (1980) in
which the transition between V; and Vj; on the upper branch and between Vy; and V; on
the lower branch of the hysteresis loop is instantaneous, chause of its simplicity. West
et al. (1985) have generalized this model to mimic the smooth change from one branch of
the hysteresis curve to the other that is observed in physiological oscillators by replacing
the above discontinuity with a hyperbolic tangent function along with a voltage which
linearly increases in magnitude with time at the transition point /; and I .
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Figure (3.1.10): The h)"steresis cycle of operation across the diode, is depicted. The
sharp changes in voltage shown in Figure (3.1.9) are here smoothed out by the coupling
between diodes. (From West et al, 1985).
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We have included two distinct types of coupling in our dynamic equations. The
first is through the resistor R since the voltage applied to one oscillator now depends on
the current being drawn by the other one. The second coupling is through the cross resis-
tor R, which directly joins the two diodes. In this latter case the current through the
diode is not the same as that drawn by the inductor in the oscillator, but is modified by
the current through the cross couping resistor, i.e., it depends on the relative values of
Vi(t) and V,(2).

Let us consider first the dynamics of the two coupled oscillators with only the R -
couping present. This is accomplished by setting G, =0 (R, =¢) in (3.1.7) resulting in
I. = 0. The dynamics of the coupled system can be depicted by the orbits in the reduced

"phase space (/,/,) for a certain set of system parameter values. Basically we observe
that all four of the dynamic variables, the two voltage V,(t) and V,(t), and the two
currents /(¢) and J,(t), are strictly periodic with period T for all applied voltages V at
which oscillations in fact occur. A periodic solution to the dynamic equations (3.1.3) and
(3.1.4) is a closed curve in the reduced phase space as shown in Figure (3.1.11). Here,
for two periods in one oscillator we have three in the other so that the coupled frequen-
cies are in the ratio of three to two. A closed orbit with 2m turns along one direction and
of 2n turns in the orthogonal direction indicate a phase locking between the two diodes
such that one diode undergoes n cycles and the other m cycles in a constant time interval
T for the coupled system. Figure (3.1.12) also shows the time trace of the voltage across
diodes 1 and 2 for this case. We observe the 3:2 ratio of oscillator frequencies over a

broad range of values of V.

For an externally applied voltage less than 0.225V the frequency ratio of the two
oscillators becomes phase locked (one-to-one coupling) at a frequency that is lower than
the intrinsic frequency of the SA mode oscillator, but faster than that of the AV junction
oscillator. In Figure (3.1.13) the output of both oscillators in the coupled system is dep-
icted, with parameter values such that the uncoupled frequencies are in the ratio of three
to two. In the coupled system, the SA and AV oscillators are clearly one-to-one phase

locked due to their dynamic interaction.

To simulate the effects of driving the right atrium at increasing rates with an exter-
nal pacemaker (an experiment done on dogs in the laboratory) (Katholi et al., 1977), an
external voltage of variable frequency was applied to the SA node oscillator branch of
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Figure (3.1.11): The current in diode 1 is graphed as a function of the current through
diode 2. We see that the trajectory forms a closed figure indicating the existence of a
limit cycle. (R =3.2Q,V(=032V,R=13Q,L,=2.772UH ,R,=1.4Q,L,=3.732uH).
(From West et al., 1985).
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Figure (3.1.13): Voltage pulses are shown as a function of time (dimensionless units) for
SA (solid line) and AV (dashed line) oscillators with voltage given by Vo = 0.182V and
the remaining parameters the same as in Figure (3.1.11). The limit cycle in this case is
1:1 phase locked. (From West et al., 1985).
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the circuit. Externally ‘‘pacing’’ the SA oscillator results in the appearance of a 3:2
Wenckebach-type periodicity over a initial range of driving frequencies. Furthermore,
when the system is driven beyond a critical point, a 2:1 ‘‘block’’ occurs with only every
other SA pulse being followed by an AV pulse [cf. Figure (3.1.14)].

While the type of equivalent circuit model given here is not unique, it does lend
support to a nonlinear concept of cardiac conduction. In particular, the model is con-
sistent with the viewpoint that normal sinus rhythm involves a bi-directional interaction
(one-to-one phase locking) between coupled nonlinear oscillators that have intrinsic fre-
quencies in the ratio of about 3:2. Furthermore, the dynamics suggest that AV Wenck-
ebach and 2:1 block, which have traditionally been considered purely as conduction
disorders, may at least, under some conditions, relate to alterations in the nonlinear cou-
pling of these two active oscillators. Apparent changes in conduction, therefore, may
under certain circumstances be epiphenomenal. The present model demonstrates that
abrupt changes (bifurcations) in the phase relation between the two oscillators occur
when the intrinsically faster pacemaker is driven at progressively higher rates. In the
present model, over a critical range of frequencies, a distinctive type of periodicity is
observed such that the interval between the SA and AV oscillators becomes progres-
sively longer until one SA pulse is not followed by an AV pulse. This cycle then repeats
itself, analogous to AV Wenckebach periodicity which is characterized by progressive
prolongation of the PR interval until a P-wave is not followed by a QRS -complex. These
AV Wenckebach cycles, which may be seen under a variety of pathological conditions,
are also a feature of normal electrophysiological dynamics and can be induced by driving

the atria with an electronic pacemaker (Josephson and Seides, 1979).

The findings of both phase-locking and bifurcation-like behavior are particularly
noteworthy in this two oscillator model because they emerge without any special
assumptions regarding conduction time between oscillators, refractoriness of either oscil-
lator to repetitive stimulation or the differential effect of one oscillators on the other.
The observed dynamics support the contention that the AV junction may be more than a
passive conduit for impulses generated by the sinus node, is also suggested by Guevara
and Glass (1982). The present model is consistent with the alternative interpretation that
normal sinus rhythm corresponds to one-to-one phase locking (entrainment) of two or
more active oscillators, and does not require complete suppression of the slower

pacemaker by the faster one, as do the passive conduit models. It should be emphasized,
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Figure (3.1.14): Voltage pulses with the same parameter values as in Figure (3.1.11); A)
1:1 phase locking persists when the SA node is driven by an external voltage pulse train
with pulse width 0.5 dimensionless time units and period 4.0. B) Driver period is
reduced to 2.0 with emergence of 3:2 Wenckebach periodicity. C) Driver period reduced
to 1.5, resulting in a 2:1 AV block. Closed brackets denote SA pulse associated with AV
response. Open brackets denote SA pulse without AV response (“‘nonconducted beat’’).
(From West et al., 1985).
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however, that when two active pacemakers become one-to-one phase locked, the intrinsi-
cally slower one may be mistaken as a passive element because of its temporal relation to
the intrinsically faster one. Furthermore, the model is of interest because it demonstrates
marked qualitative changes in system dynamics, characteristics of AV Wenckebach and
2:1 AV block, occurring when a single parameter (driving frequency) is varied over some

critical range of values.

Up to this point we have been using the traditional concepts of a limit cycle to dis-
cuss one kind of dynamic process, ie., the beating of the heart and the occurrance of cer-
tain cardiac pathologies. We could extend this discussion to model various of the other
biorhythms mentioned earlier, but that is not our purpose here. Rather we are interested
in exploring certain of the modern concepts arising in nonlinear dynamics and investigat-
ing how they may be applied in a biomedical context. Let us therefore proceed and
develop those ideas that will eventually be of value in understanding both erratic ECG
EEG time series. It is apparent that the classical limit cycle is too well ordered to be of

much assistance in that regard, so let us turn to an attractor that is a bit strange.
(b) Strange attractors (deterministic chaos)

The appellation ‘‘strange attractor’’ was given to those attractors on which, unlike
the system discussed in the preceding subsection, the system dynamics are aperiodic.
This means that a deterministic equation of motion gives rise to a trajectory whose
corresponding time series nowhere repeats itself over time; it is chaotic. The term
“‘chaotic’’ refers to the dynamics of the attractor, whereas ‘‘strangeness’’ refers to the
topology of the attractor. Juxtaposing the words deterministic and chaotic, the former
indicating the property of determinability (predictability) and the latter that of random-
ness (unpredictability ), usually draws an audience. The expectation of people is that
they will be entertained by learning how the paradox is resolved. Here instead we show
how the two concepts, long thought to be mutually exclusive, may in fact be the wave-
particle duality of nonlinear dynamics. From the point of view of classical statistical
mechanics the idea of randomness has traditionally been associated with the weak
interaction of an observable with the rest of the universe. Take for example the steady
beat of the heart, it would have been argued that a heart beat is periodic and regular. The
beat-to-beat variability that is in fact observed would be associated with changing exter-

nal conditions such as the state of exercise, the electro-chemical environment of the
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‘{ heart, etc. The traditional view requires there to be many (an infinite number) degrees of
_ freedom that are not directly observed, but whose presence is manifest through fluctua-

tions. More recently it has been learned that in a nonlinear system with even a few

degrees of freedom chaotic motion can be observed (West, 1985).

What we present in this subsection are some of the recent results obtained in non-
linear dynamics that lead to chaos. First we briefly review the classical work of Lorenz
(1963) on a deterministic continuous dissipative system with three variables. The phase
space orbit for the solution to the Lorenz system is on an attractor, but of a kind on which
the solution is aperiodic and therefore strange. We discuss this family of aperiodic solu-
tions and discover that chaos lurks in a phase space of dimension three. Rossler (1978)
points out that if oscillation is the typical behavior of low-dimensional dynamical sys-

tems, then chaos, in the same way, characterizes three-dimensional continuous systems.

The modern view of randomness discussed in the Introduction can be traced back to
Poincaré, but the recent avalance of interest dates from the attempts of Lorenz to under-
stand the short term variability of weather patterns and thereby enhance their predictabil-
ity; subsequently we consider a number of biomedical examples. His approach was to
represent a forced dissipative geophysical hydrodynamic flow by a set of deterministic
nonlinear differential equations with a finite number of degrees of freedom. By forcing
we mean that the environment provides a source of energy for the flow field, which in
this case is a source of heat at the bottom of the atmosphere. The dissipation in this flow
extracts energy from the temperature gradient but the forcing term puts energy back in.
For the particular physical problem Lorenz was investigating, the number of degrees of
freedom he was eventually able to use was three, let’s call them X, Y, and Z. In the now

standard form these equations are
dX

i -o6X +0oY (3.1.9)
dy

— = =-XY -Y .1.10
T +rX | (3.1.10)
dzZ _

It = XY -bZ (3.1.11)

where o,r and b are parameters and whose solutions can be identified with trajectories in
phase space. What is of interest here are the properties of nonperiodic bounded solutions

in this three dimensional phase space. A bounded solution is one that remains within a
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restricted domain of phase space as time goes to infinity.

The phase space for the set of equations (3.1.9) - (3.1.11), is three-dimensional and
the solution to them traces out a curve I (x,y,z) given by the locus of values of
X(t)=[X(t),Y(),Z()] [cf. Figure (3.1.15)]. We can associte a small volume
Vo(t)=Xo(t)Yo(t)Zo(r) with a perturbation of the trajectory and investigate how this
volume of phase space changes with time. If the original flow is confined to a region R
then the rate of change of the small volume with time 9V /d¢ must be balanced by the
flux of volume J(¢)= Vo(t)).((t) across the boundaries of R. The quantity )'((t) in the
flux J represents the time rate of change of the dynamical variables in the absence of the
perturbations, i.e., the unperturbed flow field that can sweep the perturbation out of the
region R. The balancing condition is expressed by an equation of continuity and in the

physics literature is written

% Vo@)+V-Jt) = 0 (3.1.12)
or in detail
1 d _ . . .
Vo(t) EVO(Z) = ax X +ay Y +az Z (3113)

where d/dt (=9, +x* V,) is the so-called convective or total derivative of the volume.

Using the equations of motion (3.1.9) - (3.1.11) in (3.1.13) we obtain

1 d L
Vo) TEV°(') = —-(c+b+1) . (3.1.14)

Equation (3.1.14) is interpreted to mean that as an observer moves along with an element
of phase space volume V(z) associated with the flow field, the volume will contact at a
rate b +0+1, ie., the solution to (3.1.14) is V() =Vt =0) exp [- (b +0+1)].
Hence the volume goes to zero as ¢t — oo at a rate which is independent of the solutions
X (2),Y(t) and Z(¢). As pointed out by Lorenz , this does not mean that each small
volume shrinks to a point in phase space; it may simply become flattened into a surface,
one with a fractional dimension, ie. a non-integer dimension between two and three.
Consequently the total volume of the region initially enclosed by the surface R shrinks to
zero at the same rate, resulting in all trajectories become asymptotically confined to a-

specific subspace having zero volume and a fractal dimension (Ott, 1985).
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To understand the relation of this system to the kind of dynamical situation we were
discussing in the preceding section we must study the behavior of the system on the lim-
iting manifold to which all trajectories will be ultimately confined. This cannot be done
- analytically because of the nonlinear nature of the equations of motion (3.1.10) - (3.1.11).
Therefore, these equations are integrated numerically on a computer and the resulting
solution is depicted as a curve in phase space for particular values of the parameters o, b
and r. The technical details associated with the mathematical understanding of these
solutions is available in the literature, see e.g., Ott (1985) or Eckmann and Ruelle (1985)

and of course the original discussion of Lorenz (1963).

In Figure (3.1.16) we display the behavior of Y (¢) for 3000 time units. After reach-
ing an early peak at r =35, Y (¢) relaxes so a relatively stable value at r =85 which per-
sists, subject to systematically amplified oscillations, until near 1=1650. Beyond this
time Y (+) becomes pulse-like and appears to change signs at apparently random inter-
vals. This irregularity is not just in the spacing between maxima but also in the sign of
the adjacent maxima, i.e., the irregular occurrence of a number of peaks of one sign

before a peak of the opposite sign occurs.

In Figure (3.1.17a) the solution manifold in the three dimensional phase space is
shown and (3.1.17b) projects the solution manifold onto the (z,y )-plane and the (x,y)-
plane. The trajectory indicated is not complete, but is that segment traversed in the time
interval r = 1400 to 1900. The points C and C" are the fixed points of the equations, i.e.,
the values of x,y, and z for which X =¥ =Z =0 in (3.1.8)(3.1.10), which for r>1
yieldX =Y = £[b(r-1)] 1’2, Z = r-1. These two views of the trajectory indicate that
the erratic behavior apparent in the Y (¢) plot [cf. Figure (3.1.16)] arises from the orbit
spiraling around one of the fixed points C or C’ for some arbitrary period and then jump-
ing to the vicinity of the other fixed point, spiraling around that for a while and then jump
back to the other and on and on. If the number of times the orbit circled C and C’ were
recorded and ordered, the resulting sequence would be random. Virtually all trajectories

finally end up on this highly unstable manifold.

The strange attractor depicted in Figure (3.1.15) is not the only solution to the
Lorenz system of equations. This solution was obtained for the parameter values
6=10,b =8/3,r =28. If the values =10 and b =8/3 are held fixed and r is increased

from zero, a wide range of attractors and subsequent dynamic behaviors are obtained.
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Figure (3.1.15) The attractor solution to the Lorenz system, equations (3.1.9)-(3.1.11), is
depicted in a three dimensional phase space (X,Y,Z). The attractor is strange in that it
has a fractal (noninteger) dimension. (From Schaffer, 1985).
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The possible flow patterns make the transition from stable equilibria independent of ini-
tial conditions, to chaotic attractors that are sensitively dependent on initial conditions, to
*‘chaotic transients’’ (Yorke and Yorke 1979) in which, for certain initial conditions, an
apparently chaotic trajectory emerges and asymptotically decays into a stable equilibria.

The decay time is a sensitive function of the initial state.

Lorenz, in examining the solution to his equations, deduced that the trajectory is

~ apparently confined to a surface. Ott (1985) comments that the apparent ‘‘surface’’ must

have a small thickness, and it is inside this thickness that the complicated structure of the
strange attractor is embedded. This is where the folding discussed in the Introduction
actually occurs. If one were to pass a transverse line through this surface, the intersec-
tion of the line with the surface is a set of dimension D with 0<D <1. This fractional
dimension indicates that the intersection of the line and surface is a Cantor set such as
depicted in Figure (2.1.1). The structure of the attractor is therefore fractal, and the
stretching and folding of the trajectory discussed earlier is a geometric property of the

attractor.

The erratic behavior in the time series depicted in Figure (3.1.16) is also apparent in
the associated spectrum. The spectrum is the mean square value of the Fourier transform
of a time series, i.e., the Fourier transform of the correlation function. Consider the solu-

tion X (¢); it will have a Fourier transform over a time interval T defined by

TR dr
X = —iee 2 3.1.15
(@) _ia X(t)e o (3.1.15)
and a power spectral density (PSD)
Xr ()] 2
S (@) = lim [Xr@l” (3.1.16)
T =00 T

In Figure (3.1.18) we display the power spectral densities (PSD) S, () and S,, (®) as
calculated by Farmer, Crutchfield, Froehling, Packard and Shaw (1980) using the trajec-
tory shown. It is apparent from the power spectra density using the X (i) time series that
there is no dominant periodic x—component to the dynamics of the attractor, although
lower frequencies are favored over higher ones. The power spectral density for the Z (¢)
time series has a much flatter spectrum overall, but there are a few isolated frequencies at
which energy is concentrated. This energy concentration would appear as a strong

periodic component in the time trace of Z(¢). From this one would conclude that X (¢) is
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Figure (3.1.16): The time history of the Y () component of the solution to the Lorenz
system of equations (3.1.9)-(3.1.11) is shown for 3x10° time units (from Lorenz, 1963).
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Figure (3.1.18): The power spectral density S, () and S, (w) is calculated using the

solution for the x-component and z-component, separately, using Equation (3.1.16) (from
=>  Farmer et al., 1980).
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non-periodic, but that Z (z) possesses both periodic and non-periodic components. In fact
from the linearity of the Fourier transform (3.1.14) we would say that Z (¢) is a superposi-
tion of these two parts:

Z() = ZP () +Z,,p @) . (3.1.17)
The implication of (3.1.17) is that the auto-correlation function

Cz(®) = lim (Z@)z( +71)) | (3.1.18)

may be written as the sum of a nonperiodic components <Z,, (t)Z,, (1 +7) > that decays

to zero at T— oo and a periodic component <Zp (¢ )Z, (¢ +7) > that does not decay.

To summarize: we have here a new kind of attractor that is referred to as ‘‘strange’’
whose dynamics are ‘‘chaotic’’ and with a power spectra density resulting from the time
series of the trajectory that has broadband components. Dynamical systems that are
periodic or quasi-periodic have a PSD composed of delta funétions, i.e., very narrow
spectral peaks; non-periodic systems have broad spectra with no dramatic emphasis of
any particular frequency. It is this broad band character of the PSD that is currently used
to identify non-periodic behavior in experimental data.

So what does this all mean? In part what it means is that the dynamics of a complex
system such as the brain might be random even if its description can be *‘isolated’’ to a
few (three or more) degrees of freedom that interact in a deterministic but nonlinear way.
If the system is dissipative, i.e., information is extracted from the system on the average,
but the system is open to the environment, i.e., information is supplied to the system by
means of boundary conditions, then a *‘strange attractor’’ is not only a possible manifold

for the solutions to the dynamic equations; it, or something like it, may even be probable.

We show subsequently that the aperiodic or chaotic behavior of an attractor is a
consequence of a sensitivity to initial conditions: trajectories that are initially neafby
exponentially separate as they evolve forward in time on a chaotic attractor. Thus as
Lorenz observed: microscopic perturbations (unobservable changes in the initial state of
a system) are amplified to affect macroscopic behavior. This property is quite different
from the qualitative features of nonchaotic attractors. In the latter, orbits that start out
near one another remain close together forever. Thus small errors or perturbations

remain bounded and the behavior of individual trajectories remain predictable.
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As Crutchfield, Farmer, Packard and Shaw (1987) point out in their review Chaos , the
key to understanding chaotic behavior lies in understanding a simple stretching and fold-
ing operation, which takes place in phase space [cf. Section (2.2)]. Recall that an attrac-
tor occupies a bounded region of phase space and that two initially nearby trajectories on
a chaotic trajectory separate exponentially in time. But such a process of separation can-
not continue indefinitely. In order to maintain both these properties the attractor must
fold over onto itself like a taco. Thus although orbits diverge and follow increasingly
different paths, they eventually come close together again but on different sections of the
fold. As they explain , the orbits on a chaotic attractor are shuffled by this process of
folding, much like a deck of cards is shuffled by a dealer. The unpredictability or ran-
domness of the orbits on such an attractor is a consequence of this mixing process. The
process of stretching and folding continues incessantly in the morphogenesis of the
attractor, creating folds within folds ad infinitum. This means that such an attractor has
structure on all scales, that is to say, a@ chaotic attractor is a geomerrically fractal object.
Thus, as we have discussed in the first chapter we would expect a strange attractor to

have a noninteger dimension, i.e., a fractal dimension.

Of course these considerations are not of much practical value unless they can be
implemented in the determination of the properties of a real data set. This will be done
subsequently. The rationale for their application was also developed by Lorenz in his
seminal work, but the full extent of its importance has only recently begun to emerge, see
e.g. Lanford (1976). He (Lorenz) observed that the trajectory leaves the spiral centered
at C say, [see Figure (3.1.18)], only after exceeding some critical distance from the
center. Further, the degree to which this critical distance is exceeded determines the
point at which the next spiral, i.e., that centered at C ’ is entered as well as the number of
circuits executed prior to making the transition back to the C center again. Thus he con-

sl s

e 5?,;’,555 i

cludes that *‘some single feature of a given circuit should predict the same feature of the
following circuit.”’ As an example he selected the maximum value of the Z(¢) variable

along the trajectory which occurs whenever the circuit is nearly completed.

3
X
¥

~ In Figure (3.1.19) the abscissa is labeled by the value of the n** maxima Z, of Z(¢)
: and the ordinate is labeled by the value of the following maximum Z, ;. It is clear that
the points generated lie along a curve if the spaces between points are filled in. This is
shown for example by Shaw (1981) using the increased computing capacity that has
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Figure (3.1.19): Corresponding values of relative maximum of Z (abscissa) and subse-

quent relative maximum of Z (ordinate) occurring during the first 6000 iterations (from
Lorenz, 1963).
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developed in the intervening years. The computer generated function clearly prescribe a
two- to-one relation between Z, and Z,,;. From this relation one could formulate an
empirical prediction scheme using the geometry of the attractor as a data set without a
knowledge of the underlying dynamic equations. In the next section, after we learn about

mappings, we will see how this is done.

A second example of a dynamic system whose solutions lie on a chaotic attractor
was given by Rossler (1976) for a chemical process. He has in fact provided over half a
dozen examples of such attractors [cf. Rossler (1978) ], but we will not discuss all of
them here. It is useful to consider his motivation for constructing such a variety of
chaotic attractors. In large part it was to understand the detailed effects of the stretching
and folding operations in nonlinear dynamical systems. These operations mix the orbits
in phase space in the same way a baker mixes bread by kneading it, i.e., rolling it out and
folding it over. Visualize a drop of red food coloring placed on top of a ball of dough.
This red spot represents the initially nearby trajectories of a dynamic system. Now as the
dough is rolled out for the first time the red spot is stretched into an ellipse, which even-
tually is folded over. After a sufficiently long time the red blob is stretch and folded
many times, resulting in a ball of dough with alternating layers of red and white.
Crutchfield et al. (1987) point out that after 20 such operations the initial blob has been
stretched to more than a million times its original length, and its thickness has shrunk to
the molecular level. The red dye is then thoroughly mixed with the dough, just as chaos

thoroughly mixes the trajectories in phase space on the attractor.

The dynamic equations for Rossler’s (1976) three degree of freedom system is

X = =(Y+2) (3.1.19)
Y = X +aY (3.1.20)
Z=b+XZ~-cZ (3.1.21)

where a, b and c¢ are constants. For one set of parameter values, Farmer et al. (1980)
referred to the attractor as ‘‘the funnel,”’ the obvious reason for this name is seen in Fig-
ure (3.1.20). Another set of parameter values yields the ‘‘simple Réssler attractor,”’ [cf.
Figure (3.1.21d)]. Both of these chaotic attractors have one positive Lyapunov exponent.
As we mentioned earlier, a Lyapunov exponent is a measure of the rate at which trajec-

tories separate one from the other [cf. Section (3.2)]. A negative exponent implies the
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Figure (3.1.20) The “funnel’’ attractor solution to the Rossler Equations (3.1.19)-
(3.1.21) with parameter values a =0.343,b =1.82 and ¢ =9.75. (From Rossler, 1979).
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orbits approach a common fixed point. A zero exponent means the orbits maintain their
relative positions; they are on a stable attractor. Finally, a positive exponent implies the
orbits exponentially separate; they are on a chaotic attractor. In Figure (3.1.20) and
(3.1.21) we have depicted phase space projections of the attractors, just as we did for the

Lorenz attractor.

Equations (3.1.19) - (3.1.21) is one of the simplest sets of differential equation
models possessing a chaotic attractor. Figure (3.1.21) depicts a projection of the attractor

onto the (x,y)-plane for four different values of the parameter ¢. Notice that as c¢ is
increased the trajectory changes from a simple limit cycle with a single maximum [Fig-
ure (3.1.21a)], to one with two maxima [Figure (3.1.21b)] and so on until finally the orbit
becomes aperiodic [Figure (3.1.21d)]. Here again, as with the Lorenz attractor, we can
relate the n** maximum of say X (¢) to the (n+1)® maximum. This can be done by not-
ing the intersection of the trajectory in Figure (3.1.21) to a line placed transverse to the
attractor. In this way we obtain the plot of the maximum shown in Figure (3.1.22), the
curve yielding the functional equation x,,; = f (x,,) which is a difference equation. This
figure suggests how we can replace a continuous model by one which is discrete. We

shall return to this procedure in the following section.
3.2 Nonlinear Bio-Mapping
The modeling strategy adapted in the preceding section was essentially that which

one finds throughout the physical sciences: construct continuous equations of evolution
to describe the dynamics of the physical variable of interest. In physical systems one can
—- use general principles such as the conservation of energy, or action, or momentum to
construct the equations of motion. When this is not possible then one can employ rea-
sonable physical arguments to construct them. In any event, once the equations of motion
have been specified, properties of the solutions are examined in great detail and com-
pared with the known properties of the physical system. It is the last stage, the com-
parison with data, that ultimately determines the veracity of the model dynamics. We

have followed this procedure in broad outline in our discussion of the two coupled non-
linear oscillators modeling cardiac dynamics. In that discussion we were able to review a

number of fundamental concepts in nonlinear dynamics that prove useful subsequently.

Now that we have seen the brand of chaos that a continuos strange attractor gives

we examine a one-dimensional noninvertible nonlinear map. This mapping is the
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Figure (3.1.21): An x-y phase plane plot of the solution to the Rdssler Equations
(3.1.19)-(3.1.21) with parameter values @ =0.20 and b =0.20 at four different values of ¢
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Figure (3.1.22): Next amplitude plot of the Rossler Equation (3.1.19)-(3.1.21) for
¢ =5,a =02 and b =0.2. Each amplitude of the oscillation of x was plotted against the

preceding amplitude.
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discrete analog of the logistic equation and leads to a subharmonic bifurcation of the
solution eventually resulting in a kind of chaos that is distinct from that generated by the
Lorenz attractor. The results are quite general for maps with a single maxima. A third
kind of chaos is related to that found on the Lorenz attractor in that a two-dimensional
invertible map is shown to have an attractor which is srange, i.e., it is the discrete analog

of the Lorenz attractor.

One of the fascinating aspect of these maps is that they appear to be the natural way
in which to describe the time development of systems in which successive generations
are quite distinct. Thus they are appropriate for describing the change in population lev-
els between successive generations: in biology, where populations can refer to the
number of individuals in a given species or the gene frequency of a mutation in an evolu-
tionary model; in sociology , where population may refer to the number of people adopt-
ing the latest fad or fashion; in medicine, where the population is the number of individu-
als infected by a contagious disease; and so on. The result of the mathematical analysis
is that for certain parameter regimes there are a large number of classes of discrete
dynamical models (maps) with chaotic solutions. The chaos associated with these solu-
tions is such that the orbits are periodic or erratic in time, but the chaos of one class has
not been shown to be the same as that of another class. However, they all indicate that
one must abandon the notion that the deterministic nonlinear evolution of a process
implies a predictable result. One may be able to solve the discrete equations of motion

only to find a chaotic solution that requires a distribution function for making predictions.

In the present section we offer an alternative description of the evolution of biologi-
cal systems; one which emphasizes the difference between physical arid biological sys-
tems in a number of cases of interest. Just as in Section 3.1 we wish to describe the
dynamics of a system characterized by an N -component vector X=X,Xy ..,Xy) and
again in order to determine the future evolution of the system from its present state we
must specify a dynamic rule for each of the components. For a great many biological
and ecological systems the variables are not considered to be continuous functions of
time, but rather as is the case of animal populations, to be functions of a discrete time
index specifying successive generations. The minimum unit of time change for the
dynamic equations would in this case be given by unity, i.e., the change of a single gen-
eration. Thus the equations of motion instead of being given by (3.1.1) would be of the

form
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X(n+1) = F[X(n)] (3.2.1)

where the changes in the vector X(n) between generation n and n +1 is determined by
the function F[X(n)]. If at generation n =0 we specify the components of X(0), i.e., the
set of circumstances characterizing the system, then the evolution of the system is deter-
mined by iteration (mapping) of the recursion relation (3.2.1.) away from the initial state.
Even in systems that are perhaps more properly described by continuous time equations
of motion it is thought by many, see e.g. Collete and Eckmann (1980), that a discrete

time representation may be used to isolate simplifying features a certain dynamical sys-

tems.
(a) One-dimensional maps

The evolution equation in a discrete representation is called a map and the evolution
is given by iterating the map, ie., by repeated application of the mapping operation to the
newly generated points. Thus iterations of the form X,, —» X, ., = f (X,,), where f maps
the one-dimensional interval'[O,I] onto itself, is interpreted as a discrete time version of a
continuous dynamical system. The choice of interval [0,1] is arbitrary since the change
of variables Y =(X-1)/(b—-a) will replace a mapping of the interval [a,b] into itself by
one that maps (0,1] into itself. For example, consider the continuous trajectory in the
two-dimensional phase space depicted in Figure (3.2.1). The intersection points of the
orbit with the X -axis are denoted by X,X,, ---. The point X, ., can certainly be
related to X, by means of the function f determined by the trajectory. Thus, instead of
solving the continuous differential equations that describe the trajectory, in this approach
one produces models of the mapping function f and studies the properties of
X.+1=f(X,). Here, as we have said, n plays the role of the time variables. This stra-
tegy has been applied to models for biological, social, economic, chemical and physical
systems. May (1976) has pointed out a number of possible applications of the fundamen-

tal equation for a single variable
Xn1 = F(X,) . (3.2.2)

In genetics, for example, X,, could describe the change in the gene frequency between
successive generations; in epidemiology, the variable X,, could denote the fraction of the
population infected at time n; in psychology, certain learning theories can be cast in the

form where X, is interpreted as the number of bits of information that can be
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Ry Figure (3.2.1): The spiral is an arbitrary orbit depicting a function y =f (x). The inter-
I section of the spiral with the x-axis defines a set of points x; x3 ..., that can be obtained
from a mapping determined by f (x).
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remembered up to generation n; is sociology, X, might be interpreted as the number of
people having heard a rumor at time n and (3.2.2) would then describe the propagation
of rumors in societies of various structures see, e.g., Kemeny and Snell (1972) The
potential applications of such modeling equations are therefore restricted only by our
imaginations.

Consider the simplest mapping, also called a recursion relation, in which a popuia-
tion X,, of organisms per unit area, on a petri dish for example, in the n** generation is
strictly proportional to the population in the preceding generation with a proportionality
constant

Xy = WXy, n=12 - (3.2.3)

The proportionality constant is given by the difference between the birth rate and death
rate and is therefore the ner birth rate of the population. Equation (3.2.3) is quite easy to
solve. Suppose that the population has a level X 0 =Ny at the initial generation, then the

recursion relation yields the sequence of relation
Xy =UNg , X3 =uX; =pNg, - (3.2.4)
so that in general

X, = u"N, (3.2.5)

This rather simple solution already exhibits a number of interesting properties. Firstly, if
the net birth rate y is less than unity, then we can write p”* = e ~"P where B>0, so that the
population decreases exponentially between successive generation (note = —Inp).
This is a reflection of the fact that with p<1, the population of organisms fails to repro-
duce itself from generation to generation and therefore it exponentially approaches

extinction:

lim X, =0if pu<1 . - (3.2.6)
n —oo

On the other hand if u > 1, then we can write p* = ¢"P where B (=Inp)> 0, so the popula-

tion increases exponentially from generation to generation. This is a reflection of the fact

that with p>1 the population has an excess at each generation resulting in a population

explosion. This is the Malthus’ exponential population growth:
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The only value of W for which the population does not have these extreme tendencies is
u=1, when, since the population reproduces itself exactly in each generation, we obtain

the unstable situation:

limX, = Ngifpu=1. (3.2.8)
n—yo0

Of course this simple model is no more valid than the continuous growth law of
Malthus (1798), which he used to describe the exponential growth of human populations.
It is curious that the modeling of such growth, although attributed to Malthus did not ori-
ginate with him. In fact Malthus was an economist and clergyman interested in the moral
implications of such population growth. His contribution to population dynamics was the
exploration of the consequences of the fact that a geometrically growing population will
always outstrip a linearly growing food supply, resulting in overcrowding and misery. A
more scientifically oriented investigator, Verhulst (1844) , put forth a theory that some-
what mediated the pessimistic view of Malthus. Verhulst noted that the growth of real
populations is not unbounded. He argued that such factors as the availability of food,
shelter, sanitary conditions, etc. all restrict (or at least influence) the growth of popula-
tions. He included these effects by making the growth rate yt a function of the population
level. His arguments allows us to generalize the discrete model to include the effects of
limited resources. In particular, the birthrate is assumed to decrease with increasing

population in a linear way:
k- pX,) = 1 -x,/0] (3.2.9)

Where © is the saturation level of the population. Thus the linear recursion relation

(3.2.3) is replaced with the nonlinear discrete logistic equation ,
X, =pX,[1-X,/0] . (3.2.10)

It is clear that when X, <<®© the population grows exponentially since the nonlinear
term is negligible. However at some point the ratio X,,/© is going to be of the order
unityband the rate of population growth will be retarded. When X,, = © there are no more
births in the population. Biologically the regime X,>® corresponds to a negative
birthrate, but this does not make biological sense and so we restrict the region of
interpretation of this model to {1 -X, /@] > 0. Finally, we reduce the number of parame-

ters from two, { and ©, to one by introducing Y, =X,/© the fraction of the saturation
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level achieved by the population. In terms of this ratio variable the recursion relation
(3.2.10) becomes

Yoo = 1Y, [1-7,] . (3.2.11)

Segal (1984) challenges the readers of his book (at this point in the analysis of this map-
ping) to attempt and predict the type of behavior manifest by the solution to (3.2.11), e.g.
Are there periodic components to the solution? Does extinction ever occur?, etc. His
intent was to alert the reader to the inherent complexity contained in the deceptively sim-
ple looking equation (3.2.11). We will examine some of these general properties shortly,
but first let us explore our example a bit more fully. Our intent is to introduce the reader
to a number of fundamental dynamical concepts that will be useful in the subsequent

study of brain wave data.

We noticed that extinction was the solution to the simple system (3.2.3) when p<l1.
Is extinction a possible solution to (3.2.11)? If it is, then once that state is attained, it
must remain unchanged throughout the remaining generations. Put differently, extinction
must be a steady-state solution of the recursion relation. A steady-state solution is one
for which Y, =Y, ., for all n. Let us assume the existence of a steady-state level Y, of

the population such that (3.2.11) becomes
Yoo = uY(1-7Y) (3.2.12)

for all n, since in the steady-state Y,,, =Y, =Y. Equation (3.2.12) defines the qua-

dratic equation
Y2+(p-1)Y, =0 (3.2.13)

which has the two roots Y, =0, and Y, =(1 — 1/). The Y, =0 root corresponds to
extinction, but we now have a second steady solution to the mapping, that being
Y, =1—1/u. One of the questions that is of interest in the more general treatment of
this problem is to determine to which of these steady states the population evolves as the

years go by, ie., extinction or some finite constant level.

Before we examine the more general properties of (3.2.11) and equations like it, let
us use a more traditional tool of analysis and examine the stability of the two steady
states found above. Traditionally the stability of a system in the vicinity of a given
value is determined by perturbation theory. We use that technique now and write
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Y, =Y, + En (3‘.2.14)

where &, < <1 so that (3.2.14) denotes a small change in the relative population from its

steady-state value. If we now substitute (3.2.14) into (3.2.11) we obtain

Yo +&u = WY +EN[1-7, -E,] . (3.2.15)

Then using (3.2.12) to eliminate certain terms and neglecting terms quadratic in £, we

obtain
én-f-l = (- 2}'::) &n (32-16)

as the recursion relation for the perturbation. In the neighborhood of extinction, the
Y, =0 steady state, (3.2.16) reduces to (3.2.3) in the variable £, rather than X,,. There-
fore if O <ju<1 then the fixed point Y, =0 is stable and if u>1 the fixed point is unstable.
By stable we mean that £, 50 as n = if 0 < <1 so that the system returns to the
fixed point, i.e., £, decreases exponentially in n. By unstable we mean that &, —oo as
n —oo if 4>1 so that the perturbation grows without bound and never returns to the fixed
point, i.e., &, increases exponentially with n. Of course L =1 means the fixed point is

neutrally stable, i.e., it neither return to nor diverges from Y, = 0.

In the neighborhood of the steady state Y, = 1 — 1/i the recursion relation becomes
Enel = -1, . (3.2.17)

The preceding analysis can again be repeated with thc. result that if 1>2 —u>-1 the
fixed point Y, =1 — 1/u is stable and implies that the birthrate is in the interval 1<p<3.
The stability is monotonic for 1<pu<2, but because of the changes in sign it is oscillatory
for 2<p<3. Similarly the fixed point is unstable for O<pt<1 (monotonic) and u>3 (oscilla-
tory).

Following Olsen and Degn (1985) we examine the nature of the solutions to (3.2.11)
as a function of the parameter | a bit more closely. This can be done using a simple
computer code to evaluate the iterates ¥,. For O<p<4 insert an initial value 0SY o<1
into (3.2.11) and generate a Y}, which is also in the interval [0,1]. This second value of
the iterate is then inserted back into (3.2.11) and a third value Y, is generated; here again
0<Y,<1. This process of generation and reinsertion constitutes the dynamic process,
which is a mapping of the unit interval into itself in a two- to-one manner, i.e., two

values of the iterate at step n can be used to generate a particular value of the iterate at
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step n+1. In Figure (3.2.2a) we show Y, as a function of n for i = 2.8 and observe that
as n becomes large (n>10) the value of Y, becomes constant. This value is a fixed point
of the mapping equal to 1-1/4=0.643, and is approached by all initial conditions
0<Yg<1li.e., itis an attractor. Quite a different behavior is observed for the same initial
point when 1 =3.2. In Figure (3.2.2b) we see that after an initial transient the process
becomes periodic, that is to say that the iterate alternates between two values. This
periodic orbit is called a 2-cycle. Thus, the fixed point becomes unstable at the parame-
ter value 1 =3 and bifurcates into a 2-cycle. Here the 2-cycle becomes the attractor for
the mapping. For a slightly larger value of g, W= 3.53, the mapping settles down into a
pattern in which the value of the iterate alternates between two large values and two
small values [cf. Figure (3.2.2c)]. Here again the existing orbit, a 2-cycle, has become
unstable at | = 3.444 and bifurcated into a 4-cycle. Thus, we see that as W is increased a
fixed point changes into a 2-cycle, a 2-cycle changes into a 4-cycle, which in turn will
change into an 8-cycle and so on. This process of period doubling is called subharmonic
bifurcation since a cycle of a given frequency ®, bifurcates into periodic orbits which
are subharmonics of the original orbit, i.e., for k bifurcations the frequency of the orbit is
a)O/Z". The attractor for the dynamic process can therefore be characterized by the
appropriate values of .

As one mught have anticipated, the end point of this period doubling process is an
orbit with an infinite period (zero frequency). An infinite period implies that the system
is aperiodic, that is to say, the pattern of the value§ of the iterate does not repeat itself in
any finite number of iterations, i.e., finite time interval, [cf. Figures (3.2.2d)]. We will
see presently about any process that does not repeat itself as time goes to infinity is com-
pletely unique and hence is random. It was this similarity of the mapping to discrete ran-
dom sequences that motivated the coining of the term chaotic to describe such attractors.
The deterministic mapping (3.2.11) can therefore generate chaos for certain values of the

parameter |

Returning now to the more general context it may appear that limiting the present
analysis to one-dimensional systems is unduly restrictive; however, we recall that the
system is pictured to be a projection of a more complicated dynamical system onto a
one-dimensional subspace [cf. e.g., Figure (3.2.1)]. A substantial literature based on
(3.2.11) has developed in the past decade, much of which is focused on the purely
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Figure (3.2.2) The solution to the map (3.2.11) is depicted for various choices of the
parameter Y. (a) The solution Y, approaches a constant value as 7 —oo forp=2.8. (b)
The solution Y,, is a periodic orbit after the initial transient dies out for n=3.2. (c) The

: orbit in (b) bifurcates to a 4-cycle for H=3.53. (d) The orbit is chaotic for p=3.9. (From
4 Olsen and Deng, 1985).
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mathematical properties of such mappings. We are not concerned with that vast litera-
ture here, except insofar as it makes available to us solutions and insights that can be
applied in biology and medicine. The physicists and mathematicians have been quite
actively exploring the consequences of these results for physical and chemical systems,
but with a few notable exceptions activity in the other sciences has been relatively sub-

dued [cf. Chapter 4].

One of the exceptions alluded to is the remarkable review article of May in which
he makes clear the state of the art in discrete systems up until 1976. In addition he makes

the following comments:

““The review ends with an evangelical plea for the introduction of these differ-
ence equations into elementary mathematics courses, so that students intuitions
may be enriched by seeing the wild things that simple nonlinear equations can
do.”

His plea was motivated by the recognition that the traditional mathematical tools such as

Fourier analysis, orthogonal functions, etc. are all fundamentally linear and

*¢...the mathematical intuition so developed ill equips the students to confront
the bizarre behavior exhibited by the simplest discrete nonlinear systems, ...
Yet such nonlinear systems are surely the rule, not the exceptions, outside the
physical sciences.’’

May ends his article with the following indictment:
“‘Not only in research, but also in the everyday world of politics and econom-
ics, we would all be better off if more people realized that simple systems do
not necessarily possess simple dynamic properties.’’

For the moment we shall make the assumption that the maps (dynamic systems) of
interest contain a single maximum and that f (X') is monotonically increasing for value of
X below this maximum and monotonically decreasing for values of X above this max-
imum. Maps such as these, i.e., maps with a single maximum, are called noninvertible,
since, given X,,; there are two possible values of X, and therefore the functional rela-
tion cannot be inverted. If the index n is interpreted as the discrete time variable, as we
did above, thcfccursion relation generates new values of X,, forward in time but not
backward in time, see e.g. Ott (1985). This assumption corresponds to the reasonable
requirement that the dynamic law stimulates X to grow when it is near zero, but inhibits
its growth when it reaches some saturation value. An example of this is provided by the

discrete version of the Verhulst equation for population growth that we have just
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examined. Equation (3.2.10) is often called the discrete logistic equation and has been
intensively studied in the physical sciences, usually in the scaled form (3.2.11). Thus the
mapping function is f(Y,)=uY,(1-Y,) and when graphed versus Y, yields the qua-
dratic curve depicted in Figure (3.2.3).

The mapping operation is one that is accomplished by applying the function f to a
given initial values Y to generate the next point, and applied sequentially to generate the
successive images of this point. The point Y, is generated by applying the mapping f, n
times to the initial point Y ¢:

Y, = f"(Yy) (3.2.18)

using the relation f"(Yg) =f [f*"(Y)]. This is done graphically in Figure (3.2.3a) for
n =3 using the rule: starting from the initial point Y, a line is drawn to the function
yielding the value Y, = f (Y ) along the ordinate, then from symmetry the same value is
obtained along the abscissa by drawing a line to the diagonal (45°) line. An application
of f to Y, is then equivalent to dropping a line from the diagonal to the f -curve to yield
Yo=f(Y)=fUf(Yol=f 2 Yo). The value Y, is obtained in exactly the same way
from Y3 =f3(Y,). The intersection of the diagonal with the function f defines a point
Y* having the property

Y' = (YY) (3.2.19)

ﬂ which is called a fixed point of the dynamic equation, i.e., Y * is the Y, s from (3.2.12).
The fixed point corresponds to the steady-state solution of the discrete equation and for
i (3.2.11) Y* =1 - 1/p (nontrivial) and ¥* =0 (trivial). We can see in Figure (3.2.3b) that
i-ff the iterated points are approaching Y * and as n —eo they will reach this fixed point. To
f determine if a mapping will approach a fixed point asymptotically, i.e., if the fixed point
is stable, we examine the slope of the function at the fixed point, see e.g., May (1976) ;
Li and Yorke (1975) ; Collet and Eckmann (1980). The function acts like a curved mir-
ror either focusing the ray towards the fixed point under multiple reflections or diverging

i
!
f . the ray away. The asymptotic direction (either towards or away from the fixed point) is

determined by the slope of the function at Y*, which is depicted in Figure (3.2.4) by the
dashed line and denoted by f'(Y") i.e., the (tangent) derivative of f(¥)atY = Y*. As
long as | £’(Y*)| <1 the iterations of the map are attracted to ¥ =Y, just as the pertur-
bation £ approaches zero in (3.2.14) near the stable fixed point. Again using a logistic
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Figure (3.2.3): A mapping function with a single maximum is shown. In (a), the iteration
away from the initial point y is depicted. In (b), the convergence to the station point y*
1s shown. (From West, 1985).
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map as an example, we have f‘(Y") =2 -y, so that the equilibrium point is stable and
attracts all trajectories originating in the interval O<Y <1 if and only if 1<it<3. This is of
course the same result we obtained using linear stability theory [cf. Eq. (3.2.17)] for the
logistic map.

When the slope of f is such that the fixed point becomes unstable, i.e., when
| f " )| >1, then the solution ‘‘spirals’’ out. If the parameter p is continuously
increased until this instability is reached then the orbit will spiral out until it encounters a
situation where Y; =f (YI) and YI =f (Y; ), i.e., the orbit becomes periodic. Said dif-
ferently, the mapping f has a periodic orbit of period 2 since Y3 =f (Y1) =F%Y3) and
YI =f (Y;) =f2(YI) since YI and Y—: are fixed points of the mapping £?2 and not of the
mapping f. In Figure (3.2.4a) we illustrate the mapping f 2 and observe it to have two
maxima rather than the single one of f. As the parameter p is increased further the dim-
ple between the two maxima increases as do the height of the peaks along with the slopes
of the intersection of f 2 with the diagonal [cf. Figure (3.2.4b)].

For 1<ji<3 the fixed point is stable and ¥ is a degenerate fixed point of f 2 je.,
Y= f 2(Y' ). At i =3.414 the fixed point becomes unstable and two new solutions to
the quadratic mapping emerge. These are the two intersections of the quadratic map with
the diagonal having slopes with magnitude less than unity, ¥ I and Y ; The chain rule of
differentiation of the derivative of f2 at Y| and Y, is the product of the derivatives
along the periodic orbit

FrPaD = FUraDlran = FraDfF ) = F2r;) (3220
so that the slope is the same as both points of the period 2 orbit, see e.g., Li and Yorke
(1975) , and in fact the slope is the same at all k¥ of the values of a period k orbit. This is
in fact a continuous process starting from the stable fixed point Y* when| f’| <1; as p is
increased this point becomes unstable at| f’| =1 and generates two new stable points
with| f 2’[ <1 for a period 2 orbit; as W is increased further these points become unstable
at| f%| =1 and generates four new stable points with | f%| <1 for a period 4 orbit. This
bifurcation sequence is tied to the value of the parameter p. As this parameter is
increased the discrete equation undergoes a sequence of bifurcations from the fixed point
to stable cycles with periods 2, 4, 8, 16, 32 ... 2F. In each case the bifurcation process is
the same as that for the transition from the stable fixed point to the stable period 2 orbit.
A graph indicating the location of the stable values of Y for a given W is given in Figure
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(3.2.5). Here we see that the y interval between successive bifurcations is diminishing so
that the ‘‘window’’ of values of W wherein any one cycle is stable progressively dimin-
ishes. If we denote by the value of p where the orbit bifurcates from length 2110
2k , then

lim Pe = Het = universal constant (3.2.21)

k= Mpyp —Hg

a result first obtained numerically by Feigenbaum (1979). This result indicates that a
constant |, is being approached by this sequence. This critical parameter value is a
point of accumulation of a period 2¥ cycles. For (3.2.11) the critical value of this param-
eter is Y., = 3.5700. The numerical value of J,, is dependent on the particular map con-
sidered, although the existence of an accumulation point does not, and more importantly
the universal constant in (3.2.21) has a value 4.69210 ... and is also independent of the

specific choice of the map.

In Figure (3.2.5) we use the logarithm of [ as the abscissa in order to clearly distin-
guish the bifurcation points. In Figure (3.2.6) we replot this sequence linearly in . In
the latter figure we distinguish from left to right, a stable fixed point, orbit of period 1; a
stable orbit of period 2, then 4, 8 and then a haze of orbits starting along the in p,, then
another orbit of period 6 then 5, and 3. Collet and Eckmann (1980) comment: ‘‘The
astonishing fact about this arrangement of stable periodic orbits is its independence of the
particular one-parameter family of maps.’””> The haze of points beyond W, consists of an
infinite number of fixed points with different periodicities, along with an infinite number
of different periodic orbits. In addition there are an uncountable number of aperiodic tra-
jectories (bounded) each of which is associated with a different initial point Y, Two
such adjacent initial points generate orbits that become arbitrarily distant with iteration
number; no mater how long the time series generated by f (Y) is iterated, the two pat-
terns never repeat. As mentioned, Li and Yorke (1975) have applied the term chaotic to
this hazy region where an infinite number of different trajectories can occur.

Thus we have arrived at the remarkable fact that a simple discrete deterministic
equation can generate trajectories that are aperiodic. In particular in order to form a
one-dimensional map to exhibit chaotic behavior, it must noninvertible. May (1976)

points out a number of practical implications of this result. The first being
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Figure (3.2.5): The bifurcation of the solution to the mapping x — 1 - px? as a function
of J1.. — . is indicated. The logarithmic scale was chosen to clearly depict the bifurcation

regions. (From Collett and Eckmann, 1980).
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Figure (3.2.6): The same as Figure (3.2.5), but with a linear scale in yt,, — 1 so that the
hazy region denoting chaos is clearly observed. (From Collett and Eckmann, 1980).
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*‘. .. that the apparently random fluctuation in census data for an animal popu-
lation need not necessarily betoken either the vagaries of an unpredictable
environment or sampling errors: they may simply derive from a rigidly deter-
ministic population growth relationship such as (3.2.11).”

(b) Two-dimensional maps

In the above discussion we defined a mapping in terms of a projection of a higher
order dynamic system onto a one-dimensional line. This same definition can be applied
for the intersection of the trajectories of a higher order dynamic process with a two-
dimensional plane. In Figure (3.2.7) a sketch of a trajectory in three dimensions is
shown, the intersection of the orbit with a plane defines a set of points that can be

obtained by means of the two-dimensional map:
Xoo1 = (1KLY, Yoo = 02X, Y,) (3.2.22)

Here we follow Ott (1985) and consider only invertible maps where (3.2.22) can be
solved uniquely for X, and Y, as functions of X,,, and Y, ; X, =g:(X,4+1, Yn4) and
Y, =¢:X,.1, Yor1)- If nis the time index then invertibility is equivalent to time rever-
sibility, so that these maps are reversible in time whereas those in the preceding discus-
sion were not. The maps in this section are analogous to the Hamiltonian dynafnic equa-
tions discussed in physics and chemistry and not the dissipative equations leading to the
strange attractors such as the Lorenz model.

The reason for examining higher order maps, such as the two-dimensional example
given by (3.2.22) is that under certain conditions these maps have many of the properties
of the so called strange attractors discussed earlier even though they are conservative.
Thus we may anticipate that complex systems in the biological and behavioral sciences
for which discrete equations may be a more natural way to model the dynamics than
would be the traditional continuous equations of the physical science, do not have to be
reduced to one-dimensional maps in order to see chaos emerge. In particular we will
establish the connection between these invertible maps and the strange attractor of

Lorenz as well as the fractal dimension discussed earlier.

The one-dimensional noninvertible maps were obtained by projecting a higher order
trajectory onto a one-dimensional line. Let us now reverse the process and expand the
space of the noninvertible map from one to two-dimensions by introducing the coordi-

nate Y, in the following way:
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Figure (3.2.7): An arbitrary trajectory is shown and its intersection with a plane parallel
to the x;,x3 — plane at x,=constant are recorded. The points A, B, C.,... define a map as
in Figure (3.2.1). This is the Poincaré surface of section. (From Ott, 1985).
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X = fX)+Y, (3.2.23)
Y., = BX, . (3.2.24)

Of course, if f is noninvertible and B=0 collapses (3.2.23) back onto the one-
dimensional map (3.2.11). For any non-zero J, however, the map (3.2.23) is invertible,
ie, X, =Y, /Band ¥, =X, ,; —f (¥Y,+1/B). Thus we have transformed a noninvertible
map to an invertible one by extending the space. As Ott (1985) points out, however, if B
is sufficiently small the distinction between the invertible two-dimensional map and the
noninvertible one-dimensional map may not be measurable.

Let us examine the behavior of a small phase space volume as the two-dimensional
map 1s iterated from X, Y, =V, to X, ,,Y,,; =Y, in analogy to what was done with

the Lorenz model. The relation between the two volumes is
Vaer = JV, (3.2.25)

where J is the Jacobian of the map:

aXn+1 aXn+1

X, oY,
J=| ar. av.., (3.2.26)
X, o,

Inserting (3.2.23) and (3.2.24) into (3.2.26) we find J = — P so that the volume at con-

secutive times (3.2.25) is given by
Var = =BV, (3.2.27)
which for an initial volume V y has the solution
Vas = (=11 BV, (3.2.28)

so that if | B| <1 the volume will contract by a factor| B| at each application of the map-
ping. This contraction does not imply that the solution goes over to a point in phase
space, but only that it is attracted to some bounded region of dimension lower than that
of the initial phase space. If the dimension of the attractor is non-integer, then the attrac-
tor is fractal; see e.g. in Mandelbrot (1980) where the observation that the fractal dimen-
sion of a set may or may not be consistent with the term strange. Following Eckmann
(1981), we employ the property that, if all the points in the initial volume V converge to

a single attractor, but that points which are arbitrarily close initially separate
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exponentially in time, then that attractor is called strange. This property of nearby trajec-
tories to exponentially separating in time is called sensitive dependence on initial condi-
tions and gives rise to the aperiodic behavior of strange attractors. There exists however
a large variety‘of attractors which are neither periodic orbits nor fixed points and which
are not strange attractors. All of these, states Eckmann (1981) , seem to present more or
less pronounced chaotic features. Thus there are attractors that are erratic but not

strange. We will not pursue this general class here.

As an example of the two-dimensional invertible mapping we first transform the
logistic equation (3.2.1) into the family of ‘maps X, =1 —cX,;? with the parametric
identification ¢ = (W2 - 1)W2 and O<c <2, since 2<u<4 and X, maps the interval
[ -1, 1] onto itself. Then using (3.2.23) and (3.2.24) we obtain the mapping first studied

by Henon®!

X

n

= 1-cX2+7, (3.2.29)
Ype = BX, (3.2.30)

In Figure (3.2.8) we have copied the loci of points for the Henon system in which 10
successive points from the mapping with the parameter values ¢ = 1.4 and p =0.2 ini-
tiated from a variety of choice of (xq,y). Ott (1985) points out that, as the map is
iterated, points come closer and closer to the attractor eventually becoming indistinguish-
able from it. This, however, is an illusion of scale. If the mixed-in region of the figure is
magnified one obtains Figure (3.2.9a) from which a great deal of structure of the attractor
can be discerned. If the boxed region in this latter figure is magnified, then what had
appeared as three unequally space lines appear in Figure (3.2.9b) as three distinct parallel
intervals containing structure. Notice that the region in the box of Figure (3.2.92)
appears the same as that in Figure (3.2.9b). Magnifying the boxed region in this latter
region we obtain Figure (3.2.9¢), which aside from resolution is a self-similar representa-
tion of the structure seen on the two preceding scales. Thus we observe scale invariant,
Cantor-set-like structure transverse to the linear structure of the éttractor. Ott (1985) con-
cludes that because of this self-similar structure the attractor is probably strange. In fact
it has been verified by direct calculation that initially nearby points separate exponen-
tially in time; [see eg. Feit, 1978; Curry, 1979 ], thereby coinciding with at least one
definition of the strange attractor.
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Figure (3.2.8) Iterated point of the map (3.2.2a), for 10% iterations with the parameter
values ¢ = 1.4 and =0.2. (From Ott, 1985).
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Figure (3.2.9) (a) Enlargement of the boxed region in Figure (3.2.8), 10* iterations; (b)
enlargement of the square in (a), 108 iterations; (c) enlargement of the square in (b),

5 x 10° iterations. (From Ott, 1985).
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(¢) The Lyapunov exponent

We have adopted the definition that chaotic systems are those that have a sensitive
dependence on initial conditions. This sensitivity requires that orbits initially near to one
another exponentially separate as they evolve forward in time. A computable quantita-
tive measure of the rate at which orbits separate is the Lyapunov exponent. For a one-
dimensional map the Lyapunov exponent is defined by the slope of the map:

af (Ys)
daYy

G=lm = ¥ in|
n=1

l (3.2.31)

n—poo N

where Y,,; =f (¥,). Shaw (1981) has shown that ¢ is also the average information
change over the entire interval of iteration. He argues that a map may be interpreted as a
machine that takes a single input Y, and generates a string of numbers during the itera-
tion process. If the string has a pattern such as would arise for an attractor that is a fixed
point or periodic orbit, then after a very short time the machines gives no new informa-
tion. On the other hand if the orbit is chaotic so that the string of numbers is random,
then each iterate is new to the observer, and gives a new piece of information. Shaw
convincingly demonstrates that a chaotic process is a generator of information. He argues
that a negative ¢ implies a periodic orbit and the magnitude of ¢ measures the degree of
stability of that orbit against perturbations. If an orbit is initiated at a point off the
periodic orbit, but within its basin of attraction, the initial data will be lost as the orbit
damps to its stable values. The parameter ¢ determines the rate at which this information
is lost to the macroscopic world. If ¢ is positive, then it determines the rate of diver-
gence of nearby trajectories which is the same as the rate of information production, see

Oseledec (1968).
As an example let us take g =4 in (3.2.11). Then if we define a new variable

z = % sin”! (NY,, ) (3.2.32)

the logistic map transforms to the *‘text map”’

2Z, 0<Y,<035
Znvi =3 201-2,)  05<Y, <l (3.2.33)
From this we obtain for the slope of the map to be used in (3.2.31)
daf (Z
Z) 1 (3.2.34)
dZ
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for all Z, so that

6=1In2=0693>0 . (3.2

Since this quantity is invariant under coordinate transformations this proves that the
logistic map with | =4 meets our definition of a chaotic dynamical system, i.e., 0.693
bits of information are generated in each iteration. In fact this mapping is chaotic for all
0>0.,=3.57 - since 6>0 for all these values.

¥ Let us consider an N -dimensional map, i.e, X=(X1x2, ... XV ),

X, = f(X,) (3.2.36)
for which we have a trajectory X', in this phase space with initial condition Xy and a
i nearly trajectory X, with initial condition X, + AXpand|AX] <<|X,|. Here the dou-
ble bars denote the norm of the vector. The difference between the two trajectories AX,

defines the tangent vector u, =AX, such that (3.2.36) can be used to write
of

U = 1X,)-f(X,) = X Ut (3.2.37) !
which defines the linearized mapping
U,y = AKX,)u, . (3.2.38)
where A is the NxN matrix defined by
d
AX,) = X fX,) (3.2.39)

so that the map (3.2.38) is linearized along the trajectory X,,. Following Nicolis (1986)

the solution to (3.2.38) for a given initial condition &y at the n™ iteration can be written

as
u, = Un,n—l Un—l,n—Z U U21 UIO é0 ’ (3’2'40)
where U is the fundamental solution matrix. The indexing on U indicates the iteration

for which it is the solution to the mapping. Let us interpret (3.2.40) starting with the
right-most factor: U;yé)=u,, is the solution (3.2.38) for the initial condition Xo. The

solution wu, is a vector of length d 1 and director é;:

Ulo éo = dl él (3.2.41)

and &, has a unit norm. Now we apply U,; to é; and obtain a vector of length d, and
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direction €,. Finally we can rewrite (3.2.40) as the product of » numbers
u, =d,d,; - dé&, ,|&] =1 (3.2.42)

instead of a product of n matrices. The maximal Lyapunov exponent is then defined as

6= lim L In|d,&]

n—yeo N

1 n
— Y Ind, . (3.243)

We see from the definition of dy =| U, ,_; &,_;| that In d, is the exponential change of
the length of &, during the time interval when the system (3.2.36) moves between the
iterates Xk—l and Xk.

Rather than finding just the maximal Lyapunov exponent we can define a Lyapunov
exponent for each of the N variables that describe the dynamic system. To do this we
note [cf. Benettin, Golgani and Strebyn, 1976 ] that one can introduce eigenvalues lj (n)
of the matrix

A, = [Ack) A,y - A" (3.2.44)

where A, is defined by (3.2.39) and is the Jacobian matrix of f. The Lyapunov

exponents are then given by

6; = = lim In| Xj(n)l | (3.2.45)

Y n—poco
These eigenvalues Xj are often called the Lyapunov numbers.

Let us consider the example given by Ott (1985) [cf. Figure (3.2.10)]. For a two-
dimensional map, the Lyapunov numbers are given by A; and A, and are interpreted as
the average principle stretching factors for a very small initial circular area of radius €(0).

More formally we can write

J n—oe

A= hm{ magnitude of the j* eigenvaues of

[A(Xru Y,) A(Xn—la Yn-l) te A(Xl, Yl)] l/"} (3.2.46)

where A(X,Y) is the Jacobian matrix of the map:
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[ of ((X,Y) of 1(X,Y) ]
oxX oY
AGLD =1 o,y 1| G247
oxX ar

The functions £ ; and f , are the components of the mapping vector f in (3.2.36); and, of
course, (X ¥y), ---, (X,,Y,) is a sequence generated by the map. Then the Lyapunov
numbers specify the average stretching rate of nearby points. If the map is to be chaotic,
for A, >A, say, then A; must be greater than unity, so that the distance between almost
nearby points increases in successive iterations. If the map is area contracting then
Ay A, <1, the distance between almost nearby points decreases in successive iterations; if

it is area preserving then A;A, = 1 and the distance remains unchanged.
3.3 Measures of Strange Attractors

In broad outline we have attempted to give some indications of how simple non-
linear dynamic equations can give rise to a rich variety of dynamic behaviors. In particu-
lar we have, in large part, focused on the phenomenon of chaos described from the point
of view of mathematics and modeling. Some effort has been made to put these discus-
sions in a biomedical context, but little or no effort was made to relate these results to
actual data sets. Thus the techniques may not appear to be as useful as they could be to
the experimentalist who observes large variations in his/her data and wonders if the
observed fluctuations are chaos or noise. In most biomedical phenomena there is no reli-
able dynamical model describing the behavior of the system, so the investigator must use
the data directly to distinguish between the two; there is no dynamic guide telling what
the appropriate parameters are that might be varied. As we mentioned earlier, a tradi-
tional method for determining the dynamic content of a time series is to construct the
power spectrum for the process by taking the Fourier transform of the autocorrelation
function, or equivalently by taking the Fourier transform of the time series itself and
forming its absolute square [cf. (3.1.16)]. The autocorrelation function provides a way to
use the data at one time to determine the influence of the process on itself at a latter time.
It is a measure of the relation of the value of a random process at one instant of time,
X (t) say, to the value at another instant T seconds later, X (¢ + t). If we have a data
record extending continuously over the time interval (=T /2, T /2), then the autocorrelation

function is defined as
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eln)= iy ¢(0)

n iterations of F
—_—

cn)=/3 {0)

Figure (3.2.10): Lyapunov exponents define the average stretching or contraction of tra-
jectories in characteristic directions. Here we show the effects of applying a two-
dimensional mapping to circles of initial conditions. A sufficiently small circle of radius
€ is transformed after n iterations into an ellipse with major radius A" ;& and minor radius
A" ,€, where A and A, are the Lyapunov exponents for n —ee.
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TR
Ca® = lim - [ XOX¢+vdr . (3.3.1)
e -T2

Note that for a finite sample length, i.e. for T finite, the integral defines an estimate for
the autocorrelation function Cy, (t,T) so that C. (1) = Tlun Cx (t,T). In Figure (3.3.1)
) 00

a sample history of X (z) is given along with its displaced time tr#cc X (¢t + 7). The point
by boint product of these two series is given in (3.3.1) and then the average over the time
interval (—T/2,T/2) is taken. A sine wave, or any other harmonic deterministic data set,
would have an autocorrelation function which persists over all time displacements. Thus
the autocorrelation function can provide a measure of deterministic data embedded in a

random background.

Similar comments apply when the data set is discrete rather than continuous, as it
would be for the mappings in Section 3.2. In the discrete case we denote the interval
between samples as A(=T/N) for N equally spaced intervals and r as the lag or delay

number so that the estimated autocorrelation function is

1 N-r
—r 21 X]X]," , r =O, 1, crr,m (3.3.2)
J:

Cn(rA,N) = N

and m is the maximum lag number. Note that C,, (rA,N) is analogous to the estimate of

the continuum autocorrelation function and becomes the true autocorrelation function in
the limit N — . These considerations have been discussed at great length by Wiener
(1949) in his classic book on time series analysis, and is still recommended today as a

text from which to capture a master’s style of investigation.

The frequency content is extracted from the autocorrelation function by applying a

filter in the form of a Fourier transform. This yield the power spectral density

Sa@ = = [ 7" Cq(n)a (3.33)

of the time series X (¢). Equation (3.3.3) relates the autocorrelation function to the power
spectral density and is known as the Weiner-Khinchine relation which is in agreement
with (3.1.15). One example of its use is provided in Figure (3.3.2a) where the exponen-
/% used in Figure (3.3.2b) yields a

tial form of the autocorrelation function C. (t)=e

frequency spectrum of the Cauchy form
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Figure (3.3.1): The time trace of a random function X (¢) versus time ¢ is shown in the
upper curve. The lower curve is the same time trace displaced by a time interval t. The
product of these two functions when averaged yield an estimate of the autocorrelation

function C (T,T).
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Te

S (®) = —1-1:_ (3.34)

1+a%t?

At high frequencies the spectrum (3.3.4) is seen to fall-off as w™2. Basar (1980), among
others, has applied these techniques to the analysis of many medical phenomena includ-
ing the interpretation of electrical signals from the brain.

The electrical activity of the brain measured at various points on the scalp is well
known to be quite erratic. It was the dream of the mathematician Norbert Wiener (1964)
that the methods of harmonic decomposition would force the brain to yield up its secrets
as a generalized control system. In this approach the aperiodic signal captured in the
EEG time series is assumed to consist of a superposition of independent frequency
modes. This assumption enabled the investigator to interpret the harmonic content of the
EEG signal using the above Fourier methods. This view was partially reinforced by the
work on evoked potentials, discussed in Chapter 4, where a clear pattern in the EGG sig-
nal could be reproduced with specific external stimulations such as auditory tones. In
Figure (3.3.3) a typical set of averaged evoked potentials for a sleeping cat is depicted.
The large initial bump is produced by auditory stimulation in the form of a step function.
The corresponding PSD is depicted in Figure (3.3.4). Here again we have an inverse

power law in frequency for high frequency. In fact, it is very close to & 2.

As we mentioned, a periodic signal in the data will show sharp peaks in the spec-
trum corresponding to the fundamental frequency and its higher harmonics [cf. Section
3.1(b)]. On the other hand the spectrum corresponding to aperiodic variations in the time
series will be broadband in frequency with no discernible structure. In themselves spec-
tral techniques have no way of discriminating between chaos and noise and are therefore
of little value in determining the source of the fluctuations in a data set. They were in
fact very useful, as shown in Section 3.1(b), in establishing the similarities between sto-
chastic processes and chaos defined as the sensitive dependence on initial conditions in a
dynamic process. -

One way in which some investigators have proceeded in discriminating chaos from
noise is to visually examine time series for period doublings. This is 2 somewhat risky
business, however, and may lead to misinterpretations of data sets. Also, period doubling
is only one of the possible routes to chaos in dynamic systems. For example consider-

able attention is again being focused on the possible dynamical mechanisms underlying
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AUTOCORRELATION FUNCTION C,,(1)

L ! 1 1 1 1

FREQUENCY (w-wo)

Figure (3.3.2): (a) The autocorrelation function C,, (1) for the typical time traces dep-
icted in Figure (3.3.1) assuming the fluctuations are exponentially correlated in time
[exp (—1/1,)]. The constant T. is the time required for C, () to decrease by a factor 1/e,
this is the decorrelation time. (b) The power spectral density S, () is graphed as a func-
tion of frequency for the exponential correlation function with a central frequency .
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Figure (3.3.3): A typical set of simultaneously recorded and selectively averaged evoked
potentials in different brain nuclei of chronically implanted cats, elicited during the slow
wave sleep stage by an auditory stimulation in the form of step function. Direct
computer-plottings. Negativity upwards (after Basar, Gonder, Ozesmi and Ungar, 1975).
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Figure (3.3.4): Mean value curves of the power spectral density functions obtained from
16 experiments during the slow wave sleep stage. Direct computer-plottings. Along the
abscissa is the frequency in logarithmic scale, along the ordinate the power spectral den-
sity, S, (w), in such a way that the power at 0 Hz is equal to 1 (or 10 log 1=0) (after
Basar et al., 1975).
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cardiac electrical disturbances. The abrupt onset of an arrhythmia appears to represent a
bifurcation from the stable, physiological steady state of normal sines rhythm to one
involving different frequency modes. Perhaps the most compelling evidence for the
relevance of nonlinear analysis to these perturbations comes from recent reports of
period-doubling phenomena during a variety of induced and spontaneous arrhythmias
[see Section 4.3].

The major question guiding future investigations in this case is whether nonliner
models will provide new understanding of the mechanisms of sudden cardiac death. The
most important fatal arrhythmia is ventricular fibrillation, characterized by rapid,
apparently erratic oscillations of the electrocardiogram. The notion that ventricular
fibrillation represents a form of cardiac chaos has been at large for many years. The term
“‘chaotic’’ to describe this arrhythmia was first used in a colloquial sense by investigators
and clinicians observing the seemingly random oscillations of the electrocardiogram
which were associated with ineffective, uncoordinated twitching of the dying heart mus-
cle. This generic use of the term ‘‘chaos’’ to describe fibrillation underwent an important
evolution in 1964 when Moe, Rheinboldt and Abildskov proposed a model of atrial
fibrillation as a turbulent cascade of lafge waves into small eddies and smaller wavelets,
etc. The concept that ventricular fibrillation represent a similar type of ‘‘completely
chaotic, turbulent’’ process was advanced most recently by Smith and Cohen (1984).
Furthermore, based on previous evidence for 2:1 alternation in the ECG waveform
preceding the onset of fibrillation, Smith and Cohen raised the provocative notion that
fibrillation of the heart might follow the subharmonic bifurcation route to chaos. This
speculation-linking recenf nonlinear models of chaotic behavior to the understanding of

sudden cardiac death-has occasioned considerable interest.

One approach to testing this hypothesis is by means of spectral analysis of fibrilla-
tory waveforms. If fibrillation is a homogeneous turbulent process then it should be asso-
ciated with a broadband spectrum with appropriate scaling characteristics. However, the
finding presented by Goldberger et al. (1986) in concert with multiple previous spectral
and autocorrelation analyses (Nygards and Hulting, 1977; Angelakos and Shephard,
1957) as well as recent electrophysiologic mapping data (Ideker, Klein and Harrison,
1981; Worley, Swain, and Colavita, 1985) suggest the need to reassess this concept of
fibrillation as cardiac chaos. Furthermore, spectral analysis of electrocardiographic data
may have more general implications for modeling transitions from physiological stability
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to pathological oscillatory behavior in a wide variety of other life-threatening conditions,
(Goldberger and West, 1987¢).

The relatively narrow-band spectrum of fibrillatory signals contrast with the spec-
trum -of the normal ventricular depolarization (QRS) waveform which in man and
animals shows a wide band of frequencies (0 to > 300 Hz) with 1/flike scaling (i.e.
power spectral density at frequency f is equal to 1/f® where b isa positive number). As
discussed in Section 2.4 we recently related the power-law scaling that characterizes the
spectrum of the normal QRS waveform to the underlying fractal geometry of the branch-
ing His-Purkinje system. Furthermore, a broadband 1/f -like spectrum has also been
identified by analysis of interbeat intervals variations in a group of healthy subjects, indi-
cating that normal sinus rhythm is not a strictly periodic state. Important phasic changes
in heart rate associated with respiration and other physiologic control systems account for
only some of the variability in heartbeat interval dynamics; overall, the spectrum in
healthy subjects includes a much wider band of frequencies with 1/f -like scaling. This
behavior is also observed in the EEG time series data.

It has been suggested that fractal processes associated with scaled, broadband spec-
tra are ‘‘information-rich.”’ Periodic states, in contrast, reflect narrow-band spectra and
are defined by monotonous, repetitive sequences, depleted of information content. In
Figure (3.3.5) we depict the spectrum of the time series X (¢) obtained from the funnel
attractor solution of the equation set (3.1.19)-(3.1.21). The attractor itself is shown in
Figure (3.1.20). We see that the spectrum is broad band as was that of the Lorenz attrac-
tor [cf. Figure (3.1.18)], with a number of relatively sharp spikes. These spikes are man-
ifestations of a strong periodic components in the dynamics of the funnel attractor. Thus
the dynamics could easily be interpreted in terms of a number of harmonic components
in a noisy backgroung, but this would be an error. One way to distinguish between these
two interpretations is by means of the information dimension of the time series. The
dimension decreases as a system undergoes a transition from chaotic to periodic dynam-
ics. The transition from healthy function to disease implies an analogous loss of physio-
logical information and is consistent with a transition from a wide-band to a narrow-band
spectrum. The dominance of relatively low-frequency periodic oscillations might be
anticipated as a hallmark of the dynamics of many types of severe pathophysiologic dis-
turbances. As pointed out earlier, such periodicities have already been documented in
many advanced clinical settings, including Cheyne-Stokes breathing patterns in heart
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Figure (3.3.5): The power spectral density for the X (¢) time series for the ‘‘funnel’’ dep-
icted in Figure (3.1.20).
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failure, leukemic cell production, sinusoidal heart rate oscillations in fetal distress syn-
dromes, and the ‘‘swinging heart’’ phenomenon in cardiac tamponade. The highly
periodic electrical fibrillatory activity of the heart, which is associated with ineffective
mechanical contraction and sudden death, is perhaps the most dramatic example of this
kind of abnormal spectral periodicity. More subtle alterations in the spectral features of
cardiovascular function have also been described, including decreased high frequency
QRS potentials in some cases of chronic myocardial infraction in contrast to increased
high frequency potentials in healthy subjects in the ‘‘supraphysiologic’’ state of exercise.
Ventricular fibrillation may serve, therefore, as a gencfal model for transitions from
broadband stability to certain types of pathological periodicities in other physiological

disturbances.

Thus we conclude that more systematic methods for distinguishing between chaos

and noise are desirable and necessary. We turn to those methods now.
(a) Correlational dimension

In the preceding discussion we presented the standard example of a correlation
function having an exponential form. Such a correlation function could describe a ran-
dom time series having a memory or correlation time T.. It could not describe a dynami-
cal system having an asymptotic stationary or periodic state. Similarly it could not
describe a nonlinear dissipative dynamical system that has a chaotic attractor.
Grassberger and Procaccia (1983) developed a correlational technique by which one can
exclude various choices for the kind of attractor on which the dynamics for a given data
set exists. They wanted to be able to say that the attractor for the data set is not multiply
periodic, or that the irregularities are not due to external noise, etc. As we have just seen
Fourier analysis would tell us if the attractor were multiply periodic, but not the source of
the fluctuations. They proposed a measure obtained by considering correlations between
points of a time series taken from a trajectory on the attractor after the initial transients
have died away.

Consider the set {X j»J =12, -+ N} of points on the attractor taken from a time
series X (), i.e., we take X ;=X (¢t +/7) where T is a fixed time interval between succes-
sive measurements. We see that this set of points could also be determined from a map-
ping where j denotes the iterate of the map. If the attractor is chaotic then since nearby

trajectories exponentially separate in time, we expect that most pairs of points X/, X,
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Jj#k will be dynamically uncorrelated. Even though these points may appear to be
essentially random, they do all lie on the same attractor and therefore are correlated in
phase space. Grassberger and Procaccia (1983) introduced the correlation integral C (r)
defined by

. 1 X
C = 1 —_ -l X. -X.
") = Jim <7 I o (r-1x:-x;|)
r
= [df ric(r) (3.3.5)
0

where ©(x ) is the Heaviside function, =0if x <0 and =1if x>0, and ¢ (r’) is the tradi-
tional correlation function in E-Euclidian dimensions
1 ¥ s
c(r) = Nh_r)n“F ,-,,-5’,1# (X -X;-r) . (3.3.6)
The virtue of the integral function is that for a chaotic or strange attractor the correla-

tional integral has the power-law form
C@r)~rY : 3.3.7D

and moreover, the ‘‘correlation exponent’’ v is closely related to the fractal dimension D
and the information dimension o of the attractor. They argue that the correlation
exponent is a useful measure of the local properties of the attractor whereas the fractal
dimension is a purely geometric measure and is rather insensitive to the local dynamic
behavior of the trajectories on the attractor. The information dimension is somewhat sen-
sitive to the local behavior of the trajectories and is a lower bound on the Hausdorff

dimension. In fact they observe that in general one has
v £0<sD . (3.3.8)

Thus if the correlation integral obtained from an experimental data set has the power-law
form (3.3.7) with v<E, one knows that the data set arises from deterministic chaos
rather than random noise, because noise will result in C (r )~ rE for a constant correlation
function over the distance r. Note that for periodic sequences v=1; for random
sequences it should equal the embedding dimension, while for chaotic sequences it is

finite and non-integer.
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Grassberger and Procaccia (1983) point out that one of the main advantages of the
correlation dimension v is the ease with which it can be measured. In particular it can be
measured more easily than either ¢ or D for cases when the fractal dimension is large
(23). Just as they anticipated, the measure v has proven to be most useful in experimen-

tal situations, where typically high dimensional systems exist.

To test their ideas they studied the behavior of a number of simple models for which
the fractal dimension is known. In Figure (3.3.6) we display three of the many calcula-
tions they did. In each case the logarithm of the correlation integral is plotted as a func-
tion of the logarithm of a dimensionless length which according to the power-law rela-
tion (3.3.7) should yield a straight line of positive slope. The slope of the line is the
correlational dimension v. We see from these examples that the technique successfully
predicts the correlational behavior for both mappings and differential equations having

chaotic attractors.
(b) Attractor reconstruction from data

More often than not the biomedical experimentalist does not have the luxury of a
mathematical model to guide the measurement process. What is usually available are a
few partial theories, securely based on assumptions often made more for convenience
than for reality, and a great deal of phenomenology. Therefore in a system known to
depend on a number of independent variables it is not clear how many kinds of measure-
ments one should make. In fact it is often unrealistically difficult to take more than the
measurement of a single degree of freedom. What then can one say about a complex sys-
tem given this single time series? Such questions are relevant, for example, in determin-
ing what can be learned about the functioning of the brain using EEG time series; in what
can be learned about the dynamics of epidemics using only the number of people infected
with a disease; in what can be learned about the excitzibility of single neurons from the
time series of post synaptic pulses; in what can be learned about biochemical reactions by
monitoring a single chemical species and so on. It turns out that quite a lot can be
learned using methods developed in nonlinear dynamics. In particular a method has been
devised that enables one to reconstruct a multidimensional attractor from the time series
of a single observable. The application of this technique to a number of data sets will be
reviewed in the next chapter, but for the moment we concentrate on the exposition of the

underlying theory.
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Packard, Crutchfield, Farmer and Shaw (1980) who constituted the nucleus of the
Dynamic Systems Collective at the University of California, Santa Cruz in the late 70’s
and early 80’s, were the first investigators to demonstrate how one reconstructs a chaotic
attractor from an actual data set. They used the time series generated by one coordinate
of the three-dimensional chaotic dynamical system studied by Réssler (1978) i.e.,
(3.1.19)-(3.1.21) with the parameter values a = 0.2, b = 0.4 and ¢ = 5.7. The reconstruc-
tion method is based on the hueristic idea that for such a three-dimensional system, any
three ‘‘independent’’ time varying quantities are sufficient to specify the state of the sys-
tem. The three dynamic coordinates X (¢), Y (¢) and Z (¢) are only one of the many possi-
ble choices. They conjectured that; ‘‘any such sets of three independent quantities which
uniquely and smoothly label the states of the attractor are diffeomorphically
equivalent.”” In English this means that an actual dynamic systcrﬁ does not know of the
particular representation chosen by us, and that any other representation containing the
same dynamic information is just as good. Thus, an experimentalist sampling the values
of a single coordinate need not find the ‘‘one’’ representation favored by nature, since

this ‘‘one’’ does not in all probability exist.

Packard et al. (1980) playing the role of experimentalists sampled the X (¢) coordi-
nate of the Rossler attractor. They then noted a number of possible alternatives to the
phase space coordinates (x,y, z) that could give a faithful representation of the dynamics
using the time series they had obtained. One possible set was the time series itself plus
two replicas of it displaced in time by t and 21, i.e. X (¢), X (¢—7) and X (¢ —27). Note that
implicit in this choice is the idea that X (¢) is so strongly coupled to the other degrees of
freedom that it contains dynamic information about these coordinates as well as itself. A
second representation set is obtained by making the time interval T an infinitesimal, so
that by taking differences between the variables we obtain X (), X (¢) and X (¢).

Figure (3.1.21d) shows a projection of the Réssler chaotic attractor on the (x,y)
plane. Figure (3.3.7) depicts the reconstruction of that attractor from the sampled X (¢)
time series in the (x,x) plane. Itis clear that the two attractors are not identical, but it is
just as clear that the reconstructed one retains the topological characteristics and
geometrical form of the experimental attractor. One quantitative measure of the
equivalence of the experimental and reconstructed attractors is the Lyapunov exponent
associated with each one. This exponent can be determined by constructing a return map

for each of the attractors and then applying the relation (3.2.31).
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~-..  Figure (3.3.6) (a) The correlation integral for the logistic map (3.2.11) at the infinite
bifurcation point u=p.,=3.699 --- The starting point was Yy=1/2, the number of
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with ¢ =1.4,$=0.01 and N =1.5x10*. (c) Correlation integrals for the Lorenz equations
(3.1.9)-(3.1.11) (dots); for the Rabinovich-Fabricant equation (open circles). In both
cases N =1.5x10* and 1=0.25. (From Grassberger and Procaccia, 1985).
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Figure (3.3.7): A two-dimensional projection of the Rossler chaotic attractor (a) is com-
pared with the reconstruction in the (x,x) plane of the attractor (b) from the time series
x(t). The dashed line indicates the Poincaré surface of section for this attractor (from
Packard et al., 1980).
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A return map is obtained By constructing a Poincaré surface of section. In this
example of an attractor projected onto a two-dimensional plane, the Poincaré surface of
section is the intersection of the attractor with a line transverse to the attractor. We indi-
cate this by the dashed line in Figure (3.3.7) and the measured data are the sequence of
values {X,} denoting the crossing of the line by the attractor in the positive direction.
These data are used to construct a next amplitude plot in which each amplitude X, ,, is
plotted as a function of the preceding amplitude X,,. It is possible for such a plot to yield
anything from a random spray of points to a well defined curve. If in fact we find a curve
with a definite structure then it may be possible to construct a return map for the attrac-
tor. For example, the oscillating chemical reaction of Belousov and Zhabotinskii was
shown by Simoyi, Wolf, and Swinney (1980) to be describable by such a one-
dimensional map. In Figure (3.3.8) we indicate the return map constructed from the
experimental data of Simoyi et al. (1980), also Figure (3.1.19) for the Lorenz attractor.

Simoyi et al. (1982) point out that there are 25 distinct chemicals in the Belousov-
Zhabotinskii reaction, many more than can be reliably monitored. Therefore there is no
way to construct the twentyfive dimensional phase space {X;(t)},j =1, ---, 25 from
the experimental data. Instead they use the embedding theorems of Whitney (1936) and
Takens (1981) to justify the monitoring of a single chemical species, in this case the con-
centration of the bromide ion, for use in constructing an m-dimensional phase portrait of
the attractor {X (¢), X (¢ +71), - - X[t +(m~1)7]} for sufficiently large m and for almost
any time delay t. They find that for their experimental data m=3 is adequate and the
resulting one-dimensional map [cf. Figure (3.3.8)] provided the first example of a physi-

cal system with many degrees of freedom that can be so modeled in detail.

Let us now recap the technique. We assume that the system of interest, an EEG sig-
nal say, can be described by N variables, where N is large but unknown, so that at any
instant of time there is a point X(t)=(X(¢), X5(t), - - , Xy (¢)) in an N -dimensional
phase space that completely characterizes the system. This point moves around as the
system evolves, in some cases approaching a fixed point or limit cycle as}mptotically in
time. In other cases the motion appears to be purely random and one must distinguish
between a system confined to a chaotic attractor and one driven by noise. In experi-
ments, one often only records the output of a single detector, which selects one of the N

components of the system for monitoring. In general the experimentalist does not know
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Figure (3.3.8): Attractor from a chemical oscillator. (a) The time series X (¢) is the
bromide ion concentration in a Belousov-Zhabatinskii reaction. A time interval 7 is indi-
cated. (b) Plot of X (¢) versus X (¢ +1). Dotted line indicates a cut through the attractor.
(c) Cross section of attractor along cut. (d) Poincaré return map of cut, P (N + 1) is the
position the trajectory crosses the dotted line as a function of the crossing position on the
previous turn around the attractor (from Roux and Swinney. 1981).
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the size of the phase space since the important dynamic variables are usually not known
and therefore he/she must extract as much information as possible from the single time
series available, X |(¢) say. For sufficiently long times T one uses the embedding theorem
to. construct the sequence of displaced time series
{(X@),X¢+7), -+, X, [t +(m - 1)1:]} . This set of variables has been shown to have
the same amount of information as the N-dimensional phase point provided that
m 22N + 1. Thus, as time goes to infinity, we can build from the experimental data a
one-dimensional phase space X (), a two-dimensional phase space with axes
{X1(t),X{(t +71)}, and so on. The condition on the embedding dimension m, i.e.
m 22N + 1, is often overly restrictive and the reconstructed attractor does not require m

to be so large.
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4. Review of Some Biomedical Applications of the Reconstruction Technique

In Chapters 2 and 3 we have made every effort to develop some rather difficult
mathematical concepts and techniques in a context that would make their importance
self-evident in a biomedical context. In the present section we take a single method, the
reconstruction technique, and review how it has been applied to problems of biomedial
interest and argue for its continued refinement and application in this area. The list of
examples is representative rather than exhaustive, but a rather extensive bibliography is
attempted. This reconstruction technique is important because it provides a way to
extract the greatest amount of modeling information from the data. The attractor that is
reconstructed from the data is shown to clearly distinguish between noise and chaos, and
since the ways to influence systems contaminated by noise are quite different from those
manifesting fluctuations due to low order nonlinear interactions, being able to distinguish
between the two can be crucial. When such an attractor can be reconstructed from a time
series it explicitly shows the number of variables required to faithfully model the

phenomenon of interest.

In this chapter we span the realm of activity from that of the single neuron, through
complex biochemical reactions to the social influence of epidemeology. In all these
cases we see the rich dynamic structure of chaotic attractors and find that scientists have
been able to exploit the concepts of nonlinear dynamics to answer some of the fundamen-
tal questions that were left unanswered or ambiguous using more traditional techniques.

Let us examine epidemology to begin our review of these activities.

Infectious diseases may be divided into those caused by microparasites such as
viruses, bacteria and protozoa and those caused by macroparasites such as helminths and
arthropods. Childhood epidemics of microparasitic infections such as mumps and
chicken pox show almost periodic yearly outbreaks and those cyclic patterns of infection
have been emphasized in a number of studies (Anderson, Grenfelt and May, 1984) In
Figure (4.0.1) is depicted the number of reported cases of infection each month for mea-
sles, chicken pox and mumps in New York City and measles in Baltimore. The obvious
irregularities in these data have usually been explained in terms of stochastic models
(Bartlett, 1960; Anderson, 1982), but the more recent applications of chaotic dynamics to
these data have resulted in a number of interesting results. In Section 4.1 we review
Schaffer and Kott’s (1985) analysis of the data in Figure (4.0.1).
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Figure (4.0.1): The monthly reported cases of measles, chicken pox and mumps in New
York and measles in Baltimore in the periods 1928-72 [from London & Yorke, 1973].
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reaction being the most throughly studied of the oscillating chemical reactions. We

briefly indicate some of the experimental evidence for the existence of deterministic

chaos in well -controlled nonequilibrium reactions in Section 4.3

Goldberger et al, 1985; Babloyantz and Destexhe, 1988). One such indication comes
from the time series interbeat intervals (RR), i.e., the number of R waves in the electro-

cardiographic signal. The ordered set of RR intervals form a suitable times series when

4.1 The Dynamics of Epidemics

As pointed out by Schaffer and Kott (1985) discussions over the relative importance
of deterministic and stochastic processes in regulating the incidence of disease have
divided students of population dynamics. These authors show that much of the contention
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is more apparent than real, and is a consequence of how certain data are processed.
Spectral analysis has been a traditional tool for discriminating between these two contri-
butors to a given time series, e.g. those in Figure (4.0.1). We learned in Section 3.3,
however, that even though some systems are completely deterministic their spectra may
be very broad, i.e., indistinguishable from random noise (Crutchfield, Donnelly, Farmer,
Jones, Packard and Shaw, 1980). We also saw that in other cases the spectrum can have
a few sharp peaks superimposed on a broadband background. These peaks are inter-
preted as phase coherence in the system dynamics (Farmer et al. 1980). Thus it is not
possible by spectral means alone to distinguish deterministic (chaotic) dynamics from

periodic motion contaminated by noise.

There are a number of models that partition a population into a set of categories
and describe the development of an epidemic by means of differential equations involv-
ing the interactions of the members of one category with those of another. The state vari-
ables are the number of individuals in each of the assigned categories: 1. susceprible; 2.
exposed (infected) 3. infectious and 4. recovered (immune)(London and Yorke, 1973;
Dietz, 1976; Anderson and May, 1982). These four state variables give rise to the SEIR
model for epidemics (Schaffer, 1985):

S@¢t) = m[1-5@¢)] -bS () 4.1.1)
E()=bS@)I(¢)-(m+a)E({) (4.1.2)
[(¢t) = aE@t) - (m +g)1(t) (4.1.3)

The fourth variable has been eliminated from this description by assuming that the total
population is kept constant. Here, m~! is the average life expectancy, a”!is the average
latency period, and g~! is the average infectious period. The contact rate b is the aver-
age number of susceptibles contacted yearly per infective. Before assigning values to the
parameters m,a, g and b and solving the set (4.1.1) - (4.1.3), let us turn to the analysis
of the data. -

The number of cases of measles shown in Figure (4.0.1) are taken from London and
York (1973) and are those reported monthly by physicians for the cities of New York and
Baltimore for the years 1928 to 1963. Not all cases were reported because reporting was
voluntary, so that Yorke and London estimate that the reported cases are between a factor

five and seven below the actual number. In the spectra given in Figure (4.1.1) we see a
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Figure (4.1.1): Epidemics of measles in New York and Baltimore. Top. The numbers of
cases reported monthly by physicians from 1928 to 1963. Bottom. Power spectra (From

Schaffer & Kot, 1985).
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number of peaks superimposed on a noisy background. The most prominent peak coin-
cides with a yearly cycle with most cases occurring during the winter. The secondary

peaks at 2 and 3 years are obtained by an appropriate smoothing of the data.

These data were also plotted using Taken’s reconstruction technique as phase plots
of N(t), N(¢t +7), N(t +21) when N is the number of cases per month and t is a two to
three month shift in the time axis. In Figure (4.1.2) and (4.1.3) we show the phase por-
traits obtained using the smoothed data. Schaffer and Kott point out that for both New
York and Baltimore most of the trajectory traced out by the data lies on the surface of a
cone with its vertex near the origin. They conclude by inspection of these figures that the
attractor is an essentially two-dimensional objected embedded in three dimensions. This
estimate is made more quantitative using the method of Grassberger and Procaccia
(1983a-c) to calculate the correlation dimension. In Figure (4.1.4) we see that the dimen-
sion asymptotes to a value of approximately 2.5 as the embedding dimension is increased

to five.

Let us now return to the SEIR model of epidemics. For measles in the large cities
of rich countries, m™! = 102, a™! =107}, and g~' = 1072 As given by (4.1.1) - (4.1.3)
the solution to the SEIR model as determined by the value of the rate of infection Q:

Q = ball[(m+a)m+g)] . 4.1.4)

If Q <1 the disease dies out; if Q > 1, it persists at a constant level and is said to be
endemic. At long times neither of these solutions captures the properties of the attractors
shown in Figures (4.1.2) and (4.1.3), i.e., the observation of recurrent epidemics is at
variance with the predictions of the SEIR model as formulated above.

To study the effect of seasonality Schaffer (1985) replaces the contact rate b in
(4.1.1) and (4.1.2) with a periodic function

b(t) = by[1+cos2nz] . (4.1.5)

For this form of the contact rate the solution to the SEIR-model has period-doubling
bifurcations leading the chaos (Aron and Schwartz, 1984; Schwartz and Smith, 1983;
1988). If we now proceed as with the data and take the solution for the number of
exposed or infectives and apply the reconstruction technique Schaffer obtains the results
shown in the top row of Figure (4.1.5). In this figure the attractors generated by the data
are compared with those produced by the SEIR model. The resemblance among the
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(a) b)

(c) (d)

Figure (4.1.2): Reconstructed trajectory for the New York data (smoothed and interpo-
lated). The motion suggests a unimodal 1-D map in the presence of noise. a-d. The data

embedded in three dimensions and viewed from different perspectives (from Schaffer,
1985).
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graphs as in Figure 4.1.2 (from Schaffer. 1985).

(a)
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Figure (4.1.3): Reconstructed trajectory for the Baltimore data. The 1-D ma

steep and compressed. Order of photo
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Figure (4.1.4) Estimating the fractal dimension for measles epidemics in New York.
Left. The correlation integral C (r) plotted against the length scale r for different

embeddings m of the data. Right: Slope of the log-log plot against embedding dimen-
sion. (From Schaffer, 1985).
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Figure (4.1.5): Measles epidemics real and imagined. Top row. Orbits reconstructed
form the numbers of infective individuals reported monthly with three-point smoothing
and interpolation with cubic splines (Schaffer and Kot, 1985). Time lag for reconstruc-
tions indicated in photos. Middle row. Orbits viewed from above (main part of the
figures) and sliced with a plane (vertical line) normal to the paper. Poincaré sections
shown in the small boxes at upper left. Bottom row. One of the Poincaré sections
magnified (left) and resulting 1-D map (right). In each case, 36 years of data are shown.
Left column: data from New York City. Middle column: data form Baltimore. Right
column: SEIR equations with parameters as in Figure (4.1.2) save b; = 0.28 (Schaffer,

1985).
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attractors is obvious. The second row depicts the attractors as seen from above. From
this perspective the essential two-dimensional nature of the flow field is most evident.
Poincaré sections are taken by plotting the intersection of the attractor with a transverse
line drawn through each of the three attractors. It is seen that these sections are V-shaped
half lines, demonstrating that the flow is confined to a nearly two-dimensional conical
surface. A one-dimensional map was constructed by plotting the sequential intersecting
points against one another yielding the nearly single humped maps shown in the final row
Figure (4.1.5). These maps for the New York and Baltimore measle data depict a strong
correlation between consecutive intersections. When a similar analysis was made of the
chicken pox and mumps data no such correlation was observed i.e., the plot yielded a

random spray of points.

The failure of the chicken pox and mumps data to yield a low-dimensional attractor
in phase space lead Schaffer and Kott to investigate the effects of noise on a known
deterministic map. The measure they used to determine the nature of the attractor was
the one-dimensional map from the Poincaré surface of section. They argued that the ran-
dom distribution of points observed in the data could well be the result of a map of the

form
X,+1 = (1+2Z)FX,) (4.1.6)

where F (X,,) is the mapping function and Z, is a discrete random variable with Gaussian
statistics of prescribed mean and variance. They showed that the multiplicative noise Z,
could totally obscure the underlying map F (X,;) when the dynamics are periodic. How-
ever as the system bifurcates and moves towards chaos the effect of the noise is reduced,
becoming negligible when chaos is reached. Thus they conclude, ‘‘that whereas noise
can easily obscure the underlying determinism for systems with simple dynamics, this
turns out not to be the case if the dynamics are complex.’’ This result is at variance with
the earlier interpretation of Bartlett (1960) that the observed spectrum for measles
resuited from the interaction between a stochastic environment and weakly damped

deterministic oscillations. Olsen and Degan (1985) support the conclusions of Schaffer

and Kott, stating:

““The conclusion that measles epidemics in large cities may be chaotic due to a
well defined, albeit unknown mechanism is also supported by the analysis of
measles data from Copenhagen yielding a one-dimensional humped map
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almost identical to the ones found from the New York and Baltimore data.’’

Hence we have seen that the reconstruction method is not only useful when the data
yield a low-dimensional attractor, but also when it does not. That is to say that certain of
the ideas in nonlinear dynamics conjoined with the older concepts of stochastic equa-
tions, can explain why certain data sets do not yield one-dimensional maps. These

insights will become sharper through additional examples.
4.2 Chaotic Neurons

Rapp et al. (1985) speculate that transitions among fixed point, periodic and chaotic
attractors by varying system control parameters may be observed clinically in failures of
physiological regulation. The direction of the transition is still the source of some con-
troversy, as mentioned before with regard to the heart, it remains unresolved whether cer-
tain pathologies are a transition from normally ordered periodic behavior to abnormal
chaos, or from normally chaotic behavior to abnormal periodicity. In that earlier context
the author supports the latter position (Goldberger and West, 1987a-c; West and Gold-
berger, 1987a,b) There also seems to be evidence accumulating in a number of other con-
texts, the present one included, to support the view that the observed rich dynamic struc-
ture in normal behavior is a consequence of chaotic attractors, and the apparent rhythmic
dynamics are the phase coherence in the attractors. Rapp et al. (1985) present experi-
mental evidence that spontaneous chaotic behavior does in fact occur in neurons.

In their study Rapp et al. (1985) recorded the time between action potentials (inter-
spike intervals), of spontaneously active neurons in the precentral and postcentral gyri
(the areas immediately anterior and posterior to the central fissure) of the brain of the
squirrel monkey. The set of measured interspike intervals {¢;}, j =1,2,..,N, was used
to define a set of vectors X; = (j,¢j,1, *** »¢j +m-1) in an m-dimensional embedding
space. These vectors are used to calculate the correlational integral of Grassberger and
Procaccia (1983a-c). This use of data to construct a sequence of m-dimensional vectors
is slightly more general than the procedure discussed in Section 3.3. We can define an
m-dimensional correlation integral

.1 ¥
C,(r) = 131—"»5-57,-,,-2:1@(’ -1X;-X{) . (4.2.1)
As we discussed in Section 3.3 the virtue of this integral is that for a chaotic attractor it
has the power-law form C (r) ~r", [cf. (3.3.7)]. We can write the exponent as
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dcC,(r
v = lim 2entr) (4.2.2)
r—=0 dinr

m —oce

recall that v=0 for a fixed point, v=1 for periodic sequences, v= embedding dimension

for a purely random process and v = finite non-integer of a chaotic sequence.

To determine the correlational dimension from the interspike interval data one must
determine a scaling region in C,, (r) betwéen the noise at small » and the constant value
of unity for larger r. The plateau in the slope versus /nC,, (r) graphs in Figure (4.2.1)
defines the scaling region. In Figure (4.2.1b) we observe a plateau region for InC,, (r) in
the interval [-4.5, -2.5] for m =15 to m =20. In Figure (4.2.1d) we see that no such pla-
teau region is reached up to an embedding dimension of m =40 indicating that this time
series cannot be distinguished from random noise. Of ten neurons measured, three were
clearly described by low dimensional chaotic attractors, two were ambiguous , and five

could be modeled by random noise.

Rapp et al. (1985) drew the following two conclusions from this study:

““1. . . . the spontaneous activity of some simian cortical neurons, at least on
occasion, may be chaotic; 2. . . .irrespective of any question of chaos, the
dimension of the attractor governing the behavior can, at least for some neu-
rons for some of the time, be very low.”’

For these last neurons we have the remarkable result that as few as three or four variables
may be sufficient to model the neuronal dynamics. It would have been reckless to antici-
pate this result, but we now see that in spite of the profound complexity of the mam-
malian central nervous system the dynamics of some of its components may be describ-
able by low-dimensional dynamic systems. Thus even though we do not know what the
dynamic relations for these neurons systems might be, the fact that they do manifest such
relatively simple dynamical behavior, bodes well for the eventual discovery of the under-
lying dynamics laws. B

The next level of dynamic complexity still involving only a single neuron is its
response when subjected to stimulation. This is a technique that was mature long before
nonlinear dynamics was a defined concept in biology. We review some of the studies
here because it is clear that many neurons capable of self-sustained oscillations are

sinusoidally driven as part of the hierarchal structure in the central nervous system. The
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dynamics of the isolated neuron, whether periodic or chaotic, may well be modified

through periodic stimulation. This has been found to be the case.

Hayashi, Nakao and Hirakawa(1982) were the first investigators to experimentally
show evidence of chaotic behavior in a self-sustained oscillations of an excitable biologi-
cal membrane under sinusoidal stimulation. The experiments were carried out on the
giant internodal cell of the fresh water algae Nitella flexilis. A sinusoidal stimulation
Acosw;t + B, was applied to the internodal cell which was firing repetitively. The DC
outward current B was applied in order to stably maintain the repetitive firing which was
sustained for 40 minutes. In Figure (4.2.2) the repetitive firing under the sinusoidal
current stimulation is shown. In Figure (4.2.2a) the firing current is seen to be one-to-one
phase locked to the stimulating current. The phase plot of segmented peaks is shown in
Figure (4.2.3a), where the stroboscopic mapping function is observed to converge on a
point lying along a line of unit slope. In Figure (4.2.2b) we see that the firing of the neu-
ron has become dperiodic losing its entrainment to the stimulation. The mapping of
sequential peaks depicted in Figure (4.2.3b) reveals a single-valued mapping function.
The slope of this function is less than —1 at its intersection with the line of unit slope.
The lines in Figure (4.2.3b) clearly indicate that the mapping function admits of a period
three solution. Hayashi et al. (1982) then invoked a theorem due to Li and Yorke (1975)
that states: ‘‘period three implies chaos’’. They subsequently show that entrained, har-
monic, quasiperiodic and chaotic responses of the self-sustained firing of the Nitella
internodal cell occur for different values of the amplitude and frequency of the periodic
external force (Hayashi, Nakao and Hirakawa, 1983). These same four categories of
responses were obtained by Masumoto, Aihara, Ichikawa and Tasaki (1984) using a
squid giant axon.

The above group (Hayashi, Ishizuka, Okta and Hirakawa, 1982) also investigated
the periodic firing of the Onchidium giaht neuron under sinusoidal stimulation (the
pacemaker neuron from the marine pulmonate mollusk Onchidium verruculatum. The
oscillatory response does not synchronize with the sinusoidal stimulation, but is instead
4periodic. The trajectory of the oscillation is shown in Figure (4.2.4) and we see that it is
not a single closed curve but a filled region of phase space. This region is bounded by

the trajectory of the larger action potentials. Here again the stroboscopic mapping func-

tion is useful for characterizing the type of chaos that is evident in Figure (4.2.4). The
single-humped mapping function is shown in Figure (4.2.5) and is clearly quite similar to

3-7-88
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Figure (4.2.1) Estimation of attractor dimension. (a) Plot of InC,, (€) versus In r,m =10
to m =20, for neuron A. (b) The corresponding plot of d InC,, (r)/d Inr as a function of
InC_(r),m=15tom =20, for neuron A. The plateau exists between -4.5 and 2.5. The
dimension of the attractor is estimated to be 3.5. (c) Plotof in C,, (r) versus Inr for neu-
ronC,m=20tom =40 in steps of two. (d) The plot of 4 InC,,(r)d in(r) as a function
of In C,,(r) for neuron C, m =30 to m =40 in steps of two. No plateau is found up to
embedding dimension m =40, (From Rapp, Zummerman, Albano, de Guzman and
Greenbaum, 1985).
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the one observed in Figure (4.2.3b) for a different neuron. Again the maps allows for
period three orbits and therefore chaos (Hayashi et al, 1983). Further studies by this
group indicate that due to the form of the one-dimensional map the transition to chaos

occurs through intermittency.

Now that we have such compelling experimental evidence that the basic unit of the
central nervous system has such a repertoire of dynamic responses it is reasonable to ask
if the solutions to any models have these features. In the case of epidemics we observed
that the SEIR model did capture the essential features found in the data. It has similarly
been determined by Aihara, Matsumoto and Ikegaza (1984) that the numerical solutions
to the periodically forced Hodgkin-Huxley equations also give rise to this array of
dynamic responses. The Hodgkin-Huxley equations for the membrane potential differ-

ence V is

AV 1= gyamh (v - - n*vV-vp)-g (V-

= [1-Bam™h -V B 'V -V -m V-V € @23)
where the g;’s are the maximal ionic conductances and the V;’s are the reversal poten-
tials for j = sodium (Na), potassium (N) and leakage current component (L); I is the
membrane current density (positive outward); C is the membrane capacitance; m is the
dimensionless sodium activation; 4 is the dimensionless sodium inactivation and » is the
dimensionless potassium activation. The functions m, h and n satisfy their own rate
equations that depend on V' and the temperature , but we will not write these down here,
see e.g. Aihara et al. (1984).

There was good agreement found between the time series of the experimental oscil-
lations in the membrane potential of the periodically forced squid axon by Matsumoto et
al. (1984) and those obtained in the numerical study by Aihara et al. (1984). The latter
authors determined that there were two routes to turbulence followed by the Hodgkin-
Huxley equations: successive period doubling bifurcations and the formation of the inter-
mittently chaotic oscillation from subharmonic synchronization. The former route had
previously been analyzed by Rinzel and Miller (1980) for the autonomous Hodgkin-
Huxley equations, whereas the present discussion focuses on the non-autonomous sys-

tem. Aihara et al. (1984) reach the conclusion:

‘“Therefore, it is expected that periodic currents of various forms can produce
the chaotic responses in the forced Hodgkin-Huxley oscillator and giant axon.
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Figure (4.2.2): Entrainment and chaos in the sinusoidally stimulated internodal cell of
Nitella. (a) Repetitive firing ( upper curve) synchronized with the periodic current stimu-
lation (lower curve). (b) Non-periodic response to periodic stimulation (from Hayashi,
Nakao and Hirakawa, 1982)
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Figure (4.2.3): (a) and (b) are the stroboscopic transfer function obtained form Figure
(4.2.2) (a) and (b) respectively. The membrane potential at each peak of the periodic
stimulation was plotted against the preceding one. Period three is indicated graphically
by arrows in (b) (from Hayashi, Nakao & Hirakawa, 1982).
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Figure (4.2.4): The trajectory of the nonperiodic oscillation. The trajectory is filling up a
finite region of the phase space. The oscillation of the membrane potential was differen-
tiated by the differentiated circuit whose phase did not shift in the frequency region

below 40 Hz (from Hayashi et al, 1982).
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Figure (4.2.5): Stroboscopic transfer function of the chaotic response to periodic current
stimulation in the Onchidium giant neuron. The plot was obtained in the same way as
that of Figure 4.2.3d. The arrows indicate period three. (From Havashi et al. 1982).
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This implies that neural systems of nonlinear neural oscillators connected by
chemical and electrical synopses to each other can show chaotic oscillations

and supply macroscopic fluctuations to the biological brain.”’
4.3 Chemical Chaos

Chemistry forms the basis of all biomedical phenomena. We have just observed
that certain solutions to the periodically forced Hodgkin-Huxley equation, that describe
the chemically driven membrane potential in neurons, are chaotic. Réssler (1980) was the
first to propose that chemical systems open to the environment can have chaotic solu-
tions. In chemical reactions there are certain species called reactants that are continu-
ously converted to other species called products. In complex reactions there are often
other species around, called intermediaries, whose concentration both increase and
decrease during the course of the primary reaction. In simple reacting systems subject to
diffusion the reactants, products and intermediaries normally approach a spatially uni-
form state, ie., a state in which each species concentration approaches a different con-
stant value in the reacting mixture. In the type of reaction considered by Réssler it was
assumed that the chemical mixture is well stirred at all times so the reaction is indepen-
dent of where in the mixture it occurs. That is to say that the effects of spatial diffusion

are removed from the total rate of change of the reactant concentration.

In the Belousov-Zhabotinskii (BZ) reaction, mentioned earlier, the bifurcation
behavior we have been discussing is clearly observed. In Figure (4.3.1) we see the tran-
sition from a steady state, of the ‘‘constant’’ concentration of bromide ions and ceruim
ions, that persists for over 600 seconds, to a periodic state. A readable discussion of this
reaction for the nonspecialist is given by Field (1987), wherein he points out that the con-
trol parameter (bifurcation parameter ) is the amount of BrCH(COOH), in the reacting
vessel. One would have expected that the amplitude of the oscillating concentration
would have started out small and gradually increased. Bifurcation theory offers an expla-
nation as to why the oscillations appear at their full level rather than gradually increasing.
The steady state remains locally stable until the control parameters exceeds a critical
value at which point the steady state becomes unstable and makes a transition to the
periodic state. This sudden change in behavior is characteristic of bifurcations in systems

governed by nonlinear kinetics laws and evolving biological systems (Field, 1987; Tay-
lor, 1983).
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Figure (4.3.1): The Belousov-Zhabotinskii (BZ) reaction is the most ft{lly undc.arstood
chemical reaction that exhibits chemical organization. The general behavior of this reac-

tion as the concentrations of bromide and cerium ions oscillate (After Field 1972).
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Figure (4.3.2) Observed bromide-ion potential series with periods t (115 s), 27, 2x21, 67,

57, 31, and 2x3t; the dots above the time series are separated by one period. (From
Swiioyi, Walf and Swinney, 1982).
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Figure (4.3.3) (a) A two-dimensional projection of a three-dimensional phase portrait
for the chaotic state reconstructed from the Belousov-Zhabotinskii chemical reaction. (b)
A one dimensional map constructed from the data in (a). (From Swmioyi et al., 1982).
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Figure (4.3.4): Next amplitude plot of the oscillators observed in the peroxidase-oxidase
reaction. 3000 maxima have been computed. The first of these maxima is preceded by
100 maxima that were discarded. (From Olsen, 1983).
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Simoyi et al. (1982) conducted experiments on the BZ reaction in a well-stirred
reactor as a function of the flow rate of the chemicals through the reactor. In Figure
(4.3.2) is depicted the observed bromide-ion potential time series for different values of
the flow rate (the flow rate is the bifurcation parameter in this experiment). They, as well
as Roux, Turner, McCormick and Swinney (1982), used the embedding theorems (Whit-
ney, 1936; Takens, 1981) to justify reconstruction of the dynamic attractor from the sin-

gle bromide-ion concentration (Field, 1987).

Thus, for sufficiently high values of the control parameter (flow rate) the attractor
becomes chaotic. In Figure (4.3.3a) is depicted a two-dimensional projection of the
three-dimensional phase portrait of the attractor with the third axis normal to the plane of
the page. A Poincaré surface of section is constructed by recording the intersection of
the attractor with the dashed line to obtain the set of data points {X, }. The mapping
function shown in Figure (4.3.3b) is obtained using these data points. The one-humped
form of the one-dimensional map clearly indicates the chaotic character of the attractor.
These observations were thought to provide the first example of a physical system with
many degrees of freedom that can be modeled in detail by a one-dimensional map. How-
ever, Olsen and Degn (1977) had observed chaos in an oscillating enzyme reaction:
peroxidase-oxidase reaction in an open system some five years earlier. The next ampli-
tude plot for this latter reaction does not yield the simple one-humped mapping function
shown in Figure (4.3.3b), but rather has a ‘‘Cantor set-like’’ structure as shown in Figure
(4.3.4). Olsen and Degn (1977) constructed a mathematical model containing the
minimal chemical expressions for quadratic branchings. The results yielded periodic and
chaotic oscillations closely resembling the experimental results. In Figure (4.3.4) the
next amplitude plot of the chaotic solutions for the data is overlayed on the numerical
solutions. As pointed out by Olsen (1983): ‘“The dynamic behavior of the peroxidase-
oxidase reaction may thus be more complex than the behavior previously reported for the

BZ reaction.”’
4.4 Cardiac Chaos

As we discussed in Section 3.1 there are several areas of the mammalian heart capa-
ble of spontaneous, rhythmic self-excitation, but under physiologic conditions the normal
pacemaker is the sino-atrial (SA) mode. The SA mode is a small mass of pacemaker

cells embedded in the right atrial wall near the entrance of the superior vena cava. An

pdros.351.chapter.4.4 3-9-'88



-173-

impulse generated by the SA node spreads through the atrial muscle (triggering atrial
contraction). The depolarization wave then spreads through the atrioventricular (AV)
node and down the His-Purkinjé system into the right and left ventricles. There are a
-large number of both linear and nonlinear mathematical models describing this process of
conduction between the SA and AV nodes. Here we show how a number of experimen-
tal studies have used the new tools of data analysis, i.e. the reconstruction of phase space
attractors from a single time series, to distinguish between chaos and noise (Keener,
1987, West et al, 1985; Guevara and Glass, 1982; Ritzenberg, Adam and Cohen, 1984;
Ikeda, 1982) and to help understand the physiological dynamics.

The experimental technique of externally stimulating a neuron to deduce its intrin-
sic dynamics has also been applied by Glass et al. (1983) to aggregates of spontaneously
beating cultured cardiac cells. These aggregates of embryonic cells of chick heart were
exposed to brief single and periodic current pulses and the response recorded. A funda-
mental assumption of this work is that changes in the cardiac rhythm can be associated
with bifurcations in the qualitative dynamics of the type of mathematical models we have
been considering here. The analysis of Glass et. al. (1983) makes the three explicit

assumptions:

‘1) A cardiac oscillator under normal conditions can be described by a system
of ordinary differential equations with a single unstable steady state and
displaying an asymptotically stable limit cycle oscillation which is globally
attracting except for a set of singular points of measure zero.

i) Following a short perturbation, the time course of the return to the limit
cycle is much shorter than the spontaneous period of oscillation or the time
between periodic pulses.

iii) The topological characteristics of the phase transition curve (PTC) change
in stereotyped ways as the stimulus strength increases.’’

Denote the phase of the oscillator immediately before the i stimulus of a periodic

stimulation with a period T by ¢;. The recursion relation is

$iv1 =800)+Ty , 4.4.1)

where g (¢) is the experimentally determined phase response function for that stimulus
strength and g (¢+/) = g(¢)+/ for an integer j and T is the period of the limit cycle.
Equation (4.4.1) measures the contraction of the aggregate as a function of the phase of
the contraction at the time of the perturbation. Using the phase resetting data a Poincaré

map was constructed to determine the phase transition function [cf. Figure (4.4.1)]. This
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is done by plotting the new phase following a stimulation against the old phase, the
resulting curve is called the phase transition curve. The theoretical equation (4.4.1) is
now iterated, using the experimentally determined g (¢), to compute the response of the
aggregate to periodic stimulation. The observed responses to such perturbation are phase
locking, period doubling and chaotic dynamics as the frequency of the periodic driver is

increased.

The above authors do nor attribute the observed irregularity to deterministic chaotic
dynamics alone, but also argue that the observed effects can be strongly influenced by
biological and environmental noise. Also that prolonged periodic stimulation of the

aggregate changes the response properties of the aggregate.

In summary, the dynamics in response to periodic stimulation are predicted by
iterating the experimentally derived map and bear a close resemblance to that observed
experimentally. Glass et. al. (1983) point out that the experimentally observed dynamics
show patters similar to many commonly observed cardiac arrhythmias. Ikeda, Tsuruta
and Sato (1981) use the properties of the phase response model to explain ventricular
parasystoles. Guevara and Glass (1982) associate intermittent or variable AV block with
the complex irregular behavior characteristic of chaotic dynamics observed in the phase
response model.

The above authors (Glass et al, 1983) unanimously associate the chaotic dynamics
with pathological rather than normal cardiac behavior. The same conclusions were
reached by Ritzenberg, Adam and Cohen (1984) using the electrocardiogram and arterial
blood pressure traces of noradrenaline-treated-dogs. Noradrenaline was found to produce
variations in these traces that repeat themselves with regular periods of integral numbers
of heart beats, an effect reminiscent of subharmonic bifurcation. A next amplitude plot
of the T-waves is depicted in Figure (4.4.2). If this plot is viewed as a one-dimensional
map then it is monotonic and hence invertible and therefore in itself does not provide evi-
dence for the occurance of chaos. Oono, Kohda and Yamazaki {1980) analyze the pulse>s
of a péticnt suffering from arrythmia and also construct a next amplitude plot of T-
waves. The map in Figure (4.4.3) clearly shows that the arrythmia of this patient is
characterized by an orbit of period three. This suggests that Figure (4.4.2) may be more

consistently interpreted as two distinct blobs rather than as a continuous map.
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Figure (4.4.1): The new phase of the cardiac oscillator following a stimulation is plotted
against the old phase, the resulting curve is called the phase transition curve. This is
denoted by g () in the text. (from Glass et al, 1983).
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Figure (4.4.2): The height fo the N+1¥ T-wave is plotted against the height of the N®
T-wave during 48 beats of an episode of period doubling (from Oono, Kohda and
Yanagaki, 1980).
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Let us again consider the electrical activity of the normal heart, where the potential
difference between various points on the surface of the body is called the electrocar-
diogram (ECG). The ECG time series consists of the P-wave, the QRS complex and the
.T-wave [cf Figure (4.4.4)]. The first component reflects the excitation of the atria, the
second that of the ventricles (His-Purkinjé network) and the third is associated with
recovery of the initial electrical state of the ventricles [see Section 2.4]. Traditional wis-
dom and everyday experience tells us that the ECG time series is periodic, however
quantitative analysis of the time series reveals a number of irregularities in the ECG

record.

In Section 3.1 we presented a set of coupled nonlinear differential equations to
model the salient features of the cardiac dynamics. This model, based on a generaliza-
tion of the cardiac oscillator (West et al, 1984) of van der Pol and van der Mark
(1928,1929), gives a qualitative fit to the ECG time series, but does not as yet account for
the observed fluctuations in the data. The question remains as to whether these fluctua-
tions are the result of the oscillations being unpredictably perturbed by the cardiac
environment, or are a consequence of cardiac dynamics being given by a chaotic attrac-
tor, or both. As we mentioned there are several techniques available from dynamical sys-
tems theory that enable us to distinguish between these two possibilities. Spectral
analysis, temporal autocorrelation function and the phase space reconstruction method
are qualitative whereas the correlation dimension, Lyapunov exponents and Kolmogorov

entropy are quantitative.

In Section 2.4 we discussed the power spectrum of the QRS complex of a normal
heart and discussed the hypothesis that the fractal structure of the His-Purkinjé network
network serves as a structural substrate for the observed broad band spectrum (Gold-
berger et al, 1985b) [cf. Figure (2.4.3)]. Babloyantz and Destexhe (1988) construct the
power spectrum of a four minute record of ECG which also shows a broad band structure
[Figure (4.4.5)] which can arise from stochastic or deterministic processes. Unlike the
power-law spectra found for the single QRS complex, Babloyantz and Destexhe find an
exponential power spectrum. The exponential form has been observed in a number of
chaotic systems and has been used to characterize deterministic chaos by a number of

authors (Greenside, Ahlers, Hohenberg and Walden, 1982; Sigeti and Horathemke,
1987).
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Figure (4.4.3): A next amplitude plot of T-wave maximum yields a period three orbit
from a patient with an arrythmia (from Oono et al, 1980).
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Figure (4.4.4): ECG recording of a normal human heart. The signal is digitized at regu-
lar time intervals such as to obtain a set of N points forming the time series (sampling
frequency of 250 Hz with 12 bit resolution and 4% order low pass filters were used) (from

Babloyantz and Destexhe, 1988).
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A phase portrait of the ECG attractor may be constructed from the time series using
Taken’s reconstruction theorem. Figure (4.4.6) depicts such a portrait in three dimen-
sional phase space using two different delay times. The two phase portraits look dif-
ferent, however, their topological properties are identical. It is clear that these portraits
depict an attractor unlike the closed curves of a limit cycle describing periodic dynamics.
Further evidence for this is obtained by calculating the correlational dimension using
(4.2.1) and this dimension is found to range from 3.5 to 5.2 using 4 minute segments of

data or 6x10* points.

The successive intersection of the trajectory with a plane located at Q in Figure
(4.4.6) constitutes a Poincaré surface of section. In Figure (4.4.7) we see a return map
between successive points of intersection, ie. the set of points Py, ... Py are related by
P, = f(P,_)), where f is the return map. This obvious functional relationship between
these points indicates the presence of a deterministic chaotic dynamics [cf. Figure
(4.4.7b)]. Babloyantz and Destexhe (1988) qualify this result by pointing out that
because of the high dimensionality of the cardiac attractor, no coherent functional rela-
tionships between successive points were observed in other Poincaré surfaces of section,
however, correlational dimensions were calculated for a total of 36 phase portraits and
yielded the results quoted previously, ie. the correlation dimension spans the interval
3.6+.01 to 5.2+.01.

Another indicator that the normal sinus rhythm is not strictly periodic is the broad
band 1/f -like spectrum observed by the analysis of interbeat interval variations in
healthy subjects (Kobayashi and Musha, 1982; Goldberger et al, 1985a,b). The heart rate
is modulated by a complicated combination or respiratory, sympathetic and parasym-
pathetic regulators. Akselrod, Gordon, Ubel, Shannon, Barger and Cohen (1981) showed
that suppression of these effects considerably alters the R—~R interval power spectrum in
healthy individuals, but a broad band spectrum persists. Using the interbeat sequence as
a discrete time series Babloyantz and Destexhe evaluated the correlation dimension of
R-R intervals to be 5.940.4 with typically 1000 intervals in the series. This dimension
is significantly higher than that of the overall ECG, but we do not as yet understand the

relation in the dynamics of the two quantities.

Bébloyantz arid Destexhe (1988) arrive at the conclusion reached earlier by Gold-
berger et al (1985b) among others that the normal human heart follows deterministic
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Figure (4.4.5) (a) Semialgorithmic plot of a power spectrum from ECG showing
exponential decay at high frequencies followed by a flat region at still higher frequencies
(not shown). The flat region accounts for instrumental noise. (b) the time decay of the
autocorrelation function is characteristic of aperiodic dynamics (from Babloyantz and

Destexhe, 1988).
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(b)

3 Figure (4.4.6): Phase portraits of human ECG constructed in three dimensional space. A
;% two dimensional projection is displayed for two values of the delay t: (a) 12 ms and (b)
i; 1200 ms. (c) represents the phase portrait constructed form the three simultaneous leads
i of Figure (4.4.4). These portraits are far from the single closed curve which would
describe a periodic activity (Babloyantz and Destexhe, 1988).
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dynamics of a chaotic nature. The unexpected aspect of the present results are the high
dimensions of the chaotic attractors. In any event there is no way that the ‘‘conventional
wisdom’” of the ECG consisting of periodic oscillations can be maintained in light of

. these new results.
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Figure (4.4.7) The Poincaré map of normal heart activity. Intersection of the phase por-
trait with Y -Z plane ( X ccu= const in the region Q of Figure (4.4.6). First return map
constructed form the Y -coordinate of the previous section. We see that there may be a

simple relationship between successive intersections. (From Babloyantz and Destexhe,
1988). )
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5. The Electroencephalogram Data and the Reconstruction Technique

It has been well over a century since it was discovered that the mammalian brain
generates a small but measurable electrical signal. The electroencephalograms (EEG) of
small animals were measured by Caton in 1875, and in man by Berger in 1925. It had
been thought by the mathematician N. Wiener, among others, that generalized harmonic
analysis would provide the mathematical tools necessary to penetrate the mysterious
relations between the EEG time series and the functioning of the brain. The progress
along this path has been slow, however, and the understanding and interpretation of
EEG’s remains quite elusive. After 112 years one can only determine intermittent corre-
lations between the activity of the brain and that found on EEG records. There is no tax-
onomy of EEG patterns which delineates the correspondence between those patterns and
brain activity. The clinical interpretation of EEG records is made by a complex process
of visual pattern recognition and association on the part of the clinician, and significantly
less often through the use of Fourier transforms. To some degree the latter technique is
less useful than it might be because most EEG centers are not equipped with the comput-

ers necessary for detailed analysis of the time series.

The electroencephalographic signal is obtained from a number of standard contact
configurations of electrodes attached by conductive paste to the scalp. The actual signal
is in the microvolt range and must be amplified several orders of magnitude before it is
recorded. Layne, Mayer-Kress and Holzfuss ( 1986) emphasize that the EEG is a weak
signal in a sea of noise so that the importance of skilled electrode placement and inspec-
tion for artifacts of the r'ecording protocol cannot be overestimated (Hanley, 1984). Note
that pronounced artifacts often originate from slight movements of the electrodes and

from contraction of muscles below the electrodes.

As we have continually emphasized, the relationship between the neural physiology
of the brain and the overall electrical signal measured at the brain’s surface is not under-
stood. In Figure (5.0.1) is depicted the complex ramified structure of typical nerve cells
in the cerebral cortex (note its similarity to the fractal structures discussed in Chapter 2).
The electrical signals originate from the interconnections of the neurons through collec-
tions of dendritic tendrils interleaving the brain mass. These collections of dendrites gen-
erate signals that are correlated in space and time near the surface of the brain, and their

propagation from one region of the brain’s surface to another can actually be followed in
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Figure (5.0.1) The complex ramified structure of typical nerve cells in the cerebral cor-

tex is depicted. (Sketch by Cajal, 1888).
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real time. This signal is attenuated by the skull and scalp before it is measured by the
EEG contacts.

The long standing use of Fourier decomposition in the analysis of EEG time series
has provided ample opportunity to attribute significance to a number of frequency inter-
vals in the EEG power spectrum. The power associated with the EEG signal is essen-
tially the means square voltage at a particular frequency. The power is distributed over
the frequency interval 0.5 to 100 Hz, with most of it concentrated in the interval 1 to 30
Hz. This range is further subdivided into four sub-intervals, for historical rather than
clinical reasons: the delta, 1-3 Hz; the theta, 4-7 Hz; the alpha, 8-14 Hz; and the bera for
frequencies above 14 Hz. Certain of these frequencies dominate in different states of
awareness. A typical EEG signal looks like a random time series with contributions from
throughout the spectrum appearing with random phases. This 4periodic signal changes
throughout the day and changes clinically with sleep, i.e., its high frequency random con-
tent appears to attenuate with sleep, leaving an alpha rhythm dominating the EEG signal.
The erratic behavior of the signal is so robust that it persists, as pointed out by Freeman
(1987), through all but the most drastic situations including near-lethal levels of
anesthesia, several minutes of asphyxia, or the complete surgical isolation of a slab of
cortex. The random aspect of the signal is more than apparent, in particular, the olfac-
tory EEG has a Gaussian amplitude histogram, a rapidly attenuating autocorrelation func-

tion, and a broad spectrum that resembles ‘“1/f noise’’ (Freeman, 1975).

In this chapter we intend to review the applications of the embedding theorem to
EEG time series obtained under a variety of clinical situations. While this reconstruction
will enable us to construct measures of the degree of irregularity of the time series, such
as the correlation and information dimensions, Mayer-Kress and Layne (1987) along
with Holzfuss (1986) emphasize the unreliability of the usual procedures of extracting
these measures from such time series data, and in Section 5.1 we review a number of the
techniques that have been proposed to increase the efficiency of the data processing. In

this section -we also briefly review Freeman’s neural net model of the olfactory system.

In Section 5.2 we compare a number of these measures from a brain in epileptic
seizure with those of normal brain activity [cf. Figure (5.0.2)]. A clear reduction in the
dimensionality of the dynamic attractor is measured for a brain in seizure as compared
with normal activity. In addition to the processing of human EEG seizure data by
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Figure (5.0.2): Typical episods of the electrical activity of the human brain as recorded
from the electroencephalogram (EEG) together with the corresponding phase portraits.
These portraits are the two dimensional projections of three dimensional constructions.
The EEG was recorded on a FM analog tape and processed off-line (signal digitized in 12
bits, 250 Hz freq., 4™ order 120 Hz low pass filter). (From Babloyantz and Destexhe,
1987).
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Babloyantz and Destexhe (1986) the application of the neural net model by Freeman to
model induced seizures in rats is reviewed. A clear correlation between the measure of
the degree of irregularity of the EEG signal and the activity state of the brain is observed.

In Section 5.3 the notion of evoked potentials and event-related potentials (ERP) are
used to reinforce the interpretation of the correlation observed between the calculated
dimension and the task in which the brain is engaged. In particular we review a number
of experiments in which one component of the ERP has proven to be useful as an index
of the perceptual cognitive demands of a task. The class of experiments discussed is
intended to simulate the workload experienced by air traffic controllers and/or airplane
pilots.

5.1 Normal Brain Activity

Because of its pervasiveness it probably bears repeating that the traditional methods
of analyzing EEG time series rely of the paradigm that all temporal variations are decom-
posable into harmonic and periodic vibrations. The reconstruction technique, however,
reinterprets the time series as a multidimensional geometrical object generated by a _
deterministic dynamical process which is not necessarily a superposition of periodic
oscillations. If the dynamics are reducible to deterministic laws, then the phase portraits
of the system converge toward a finite subset of phase space. This invariant subset is the
attractor. Thus the phase space trajectories constructed from the data should be confined
to lie along such an attractor. In Figure (5.1.1) is depicted the projection of the EEG
attractor onto a two-dimensional subspace for two different pairs of leads using different

segments of the corresponding time series.

Although Figure (5.1.1) is suggestive it does not establish the dimensionality of the
attractor. You will recall that D =0 is a fixed point attractor, D =1 is a limit cycle and
noninteger D corresponds to a chaotic attractor with a fractal dimension. In Section 3.3
we reviewed the concept of a correlational dimension v and observed that v<D<m
where m is the embedding dimension of the attractor. The correlation dimension, you
will recall, is obtained by evaluating the two-point correlation function of points along
the attractor. Using the notation ijX(tj) to denote the m-dimensional vector con-
structed from the data at time ¢ =1t; and digitizing the time series into a sequence of N
equally spaced discrete values we can write the integral correlation function given by
Grassberger and Procaccia (1987a),
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.1 X
C(r) = lim — (-)[ - X-—-X.]. 5.1.1
) N—wNzi,,Z;l rol% jl ( )
In principle one would like N —oo, but in practice N may not be very large at all. For X
‘on a chaotic attractor we know that C (r) would have the power law form (3.3.7) so that
the correlation dimension v of the attractor would be given by the slope of In C (r) versus

inr.

Recall that the vector X;={X (), X (t; + ,+..., X [t; +(m—1)t]} is determined by
the size of the fixed interval . As Grassberger and Procaccia (1983a-c) point out, if T is
chosen too small then the separate elements of X; are indistinguishable. On the other
hand, T should not be too large since the trajectories diverge exponentially this n would
yield uncorrelated elements in X;. Thus a compromise value for T must be made.

Mayer-Kress et al, (1987) use a minimum information argument to select T.

A similar compromise value of the embedding dimension m must be made for best
success. If m is less than the fractal (Hausdorff) dimension of the attractor then
C(r)~r™ as it would be for a random noise time series. Thus, if a sequence of m values
are selected for which InC (r) versus In r is determined, and the v versus m dependence
is saturated beyond some value of m, the EEG time series should posses an attractor.
The saturated value v, is interpreted as the dimensionality of the attractor. The value of
m beyond which the correlation dimension saturates is often interpreted as the minimum
number of variables necessary to model the dynamics of the attractor. Using the probe
positions dépictcd in Figure (5.1.2), they use the reconstruction technique on the EEG
time series to obtain the phase portraits in Figure (5.1.1). These phase portraits do reveal
chaotic attractors with diverging trajectories, however, the EEG time series is seen to be
nonstationary . That is to say that the average position of the time series defined over
some time interval that is long compared with most of the EEG activity, is observed to
change on a longer time scale. Also the EEG trajectory is seen to undergo large excur-
sions in the phase space at odd times. From this Layne et. al. (1986) conclude that the
EEG time series are nonstationary and of high dimension, in which case the concepts of
“‘attractor’’ and “‘fractal dimension’” do not apply, since these are asymptotic or station-
ary properties of a dynamic system.

_ The correlation integral used by Layne et. al. (1986) has a slightly different weight-
ing than (5.1.1):
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Figure (5.1.2): Two standard EEG leads from the international 10-20 systems.
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Coy = pim L 1Y |
(r) = lim —Z@ r—| Xl_le (512)
N —eo refi:[Nj=1 _

where N, is the number of references points used in the calculation. We see here that
" not all patrs of points are averaged in (5.1.2), but rather 200 equally spaced reference
points in the “‘attractor’’ are averaged over. There are typically 2x10* data points, so that
using the original method would require far too much time even on a CRAY-XMP com-
puter to include all possible pairs of points. They average over 200 reference points
because C (r) is sensitive to the local structure of the ‘‘attractor’’ i.e., certain region of

the *‘attractor’’ are visited more often than others and are therefore more important.

In Figure (5.1.3) In C(r) versus In r is shown for an embedding dimension m=20
with typical EEG data. Again one can determine a ‘‘dimension’’ by fitting the region
—2< In r< - 1. Mayer-Kress and Layne (1987) introduce the term (dimensional) com-
plexity parameter to emphasize caution in the application of this technique to EEG time
series data. In Figure (5.1.4) the variation in the measured dimension from the local slope
is depicted versus /n r. The local slope is determined by a weighted least squares fit of a
tangent vector to each value for /n r. Note that the error is of the same order of magni-
tude as the dimension itself and this effect seems to increase with embedding dimension.
In Figure (5.1.5) we see that the dimension does not saturate with increasing embedding
dimension, a situation observed earlier for awake patients or those in REM sleep

[Babloyantz and Destexhe (1986)]. Mayer-Kress and Layne (1987) comment:

‘‘Even though we are unable to calculate the ‘actual dimension’ of EEG, we
believe that our numerical results reveal a comparative difference between two
states of consciousness, i.e., awake but quiet, and general anesthesia.”’

The brain wave activity of an individual during various stages of sleep was analyzed
by Babloyantz (1986). She uses the standard division of sleeping into four stages. In
stage one, the individual drifts in and out of sleep. In stagé two, the slightest noise will
arouse the sleeper, whereas in stage three a loud noise is required. The final stage is one
of deep sleep. This is the normal first sequence of stages one goes through during a sleep
cycle. Afterwards the cycle is reversed back through stages three and two at which time
dreams set in and the individual manifests rapid eye movement (REM). The dream state
is followed by stage two after which the initial sequence begins again. The EEG phase
portraits for each of these stages of sleep are depicted in Figure (5.1.6). It is clear that

whatever the form of the attractor it is not static, that is to say, it varies with the level of
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Figure (5.1.3): Dimension curve, with embedding dimension m =20, for typical EEG
data. This calculation is absed on 15000 data points k (30 seconds of data) and 200 refer-
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i but quite EEG data (lead T3-C3) (from Mayer-Kress and Layne, 1987).
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Figure (5.1.4): Local slope d of the ‘‘dimension’’ curve versus logr. Note the asymp-
totic values of d =1 for r — oo and d = 0 (from Mayer-Kress and Layne, 1987).
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Figure (5.1.5): Observed "dimension" as a function of embedding dimension m. Dimen-
sion values at each m were calculated by a weighted least squares fit. The length of the
line segments L for each fit ranged from 7 to 9 unit divisions in logr on the "dimension
curve". (from Mayer-Kress and Layne, 1987).
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Figure (5.1.6): Two-dimensional phase portraits derived from the EEG of (a) an awake
subject, (b) sleep stage two, (c) sleep stage four, (d) REM sleep. The time seriesX(t) is
made of N =4000 equidistant points. The central EEG derivation C4-A1 according to
the Jasper system. Recorded with PDP 11-44, 100 Hz for 40 s. The value of the shift
from lato Id is r =10Ar.
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sleep. Correspondingly, the correlational dimension calculated using (5.1.1) ylelds

decreasing values as sleep deepens.

In Table 5.1 is summarized a number of ‘‘dimension’’ calculations for EEG time
series for various states of brain activity. Using these data sets Mayer-Kress and Layne

(1987) reached the following conclusions:

*‘1) The ““fractal dimension’’ of the EEG cannot be determined regionally, due
to non-stationarity of the signal and subsequent limitations in the amount of
acceptable data.

2) EEG data must be analyzed in a comparative sense with the subject acting
as their control.

3) In a few cases (awake but quiet, eyes closed) with limited time samples, it
appears that the dimension algorithm converge to finite values.

4) Dimension analysis and attractor reconstruction could prove to be useful
tools for examining the EEG and complement the more classical methods
based on spectral properties.

5) Besides being a useful tool in determining the optimal delay-time for
dimension calculations, the mutual information content is a quantity which is
sensitive to different brain states.’’

The data processing results are strongly suggestive of the existence of chaotic
attractors determining the dynamics of brain activity underlying the observed EEG sig-
nals. This interpretation of the data would be strongly supported by the existence of
mathematical models that could reproduce the observed behavior; such as in the exam-
ples shown in Chapter 4. One such model has been developed by Freeman (1987) to
describe the dynamics of the olfactory system, consisting of the olfactory bulb (OB),
anterior nucleus (AON) and prepyriform cortex (PC). Each segment consists of a collec-
tion of excitatory or inhibitory neurons which in isolation is modeled by a nonlinear
second order ordinary differential equation. The basal olfactory EEG is not sinusoidal as
one might have expected, but is irregular and dperiodic. This intrinsic unpredictability is
manifest in the approach to zero of the autocorrelation function of the time series data.

This behavior is captured in Freeman’s dynamic model.

The model of Freeman generates a voltage time series from sets of coupled non-
linear differential equations with interconnections that are specified by the anatomy of
the olfactory bulb, the anterior nucleus and the prepyriform cortex. The neurons in each
collection simultaneously perform four serial operations: ‘‘1) nonlinear conversion of

afferent axonal impulses to dendritic currents; 2) linear spatiotemporal integration; 3)
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Table 5.1 - Chaos in the brain

The data in this table have been contributed by a number of authors and is published in
~Mayer-Kress and Layne (1987). The ‘‘dimension’’ of the EEGs are calculated under a

number of different conditions, i.e. changes in the processing as well as cognitive param-

pdros.351 .table.S.1

sampling delay total maximal
state of the brain lead rate (Hz) t(msec) time  embedding ‘‘dimension’’
(sec)  dimension
Albano et al. (1987)
quiet, awake, eyes closed ? 500 10 5.8 19 2602
quiet, awake, eyes open ? 500 6 5.8 19 oo
Babloyantz et al. (1985,1986)
quiet, awake C4-Al 100 100 40 10
sleep stage 2 C4-A1 100 100 40 6 50+0.1
sleep stage 4 C4-Al 100 100 40 5 4.1+0.1
REM sleep C4-A1 100 100 40 10
petit mal seizure ? 1200 15.8 5 7 2.05+0.09
Mayer-Kress and Layne $(1987) sup 1$
quiet, awake P3-01 100-500 1040 10-30 20 4-7+3-5
quiet, awake P4-02  100-500  10-40 10-30 20 4-7+3-5
quiet, awake C3-T3 100-500 1040 10-30 20 7-8%5
quiet, awake C4-T4  100-500 1040 10-30 20 7-8+5
‘data from J. Hanley
3.9-/88
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nonlinear conversion of summed dendritic current to a pulse density and 4) linear axonal
delay, temporal dispersion, translation and spatial divergence.’”” The operation of the
basic integrator in the model consists of two distinct parts: a linear time dependent opera-

tor

_1a 1,140 1
F(V,,):ab dtzv,,(:)+[a+b] " +EV"(') (5.1.3)

and a nonlinear time-invariant part G (V). Here V(¢) denotes the instantaneous voltage
and the subscript n denotes the particular collection of neurons to which it belongs. The
rate parameters are fit to data to yield a = 220/sec and b = 720/sec. The equation for
the nonlinear part of the input voltage (V') and the output variable P are;

0 =1 On(1—exp[ = (¥ = 1¥Q,]) V>—ug

-1 V< —ug (5.1.4)
where
ug = —In[1-Q,,In(1 + 1/Q,,)] (5.1.5)
and
P =uy@+1) 516

with @,, = 5.0 is the asymptote of the sigmoidal curve depicted in Figure (5.1.7). The
voltage dependent gain is

.Z_‘;. = ugexp{V —(e¥ - 1)/Q,,} 5.1.7) .

where
Vmax = InQ,, (5.1.8)

and the displacement of the maximal gain to the right increases with increasing O,,, a
critical property of the mechanism.

Subsets of equations are formed by taking two of the basic integrators and coupling
them through feedback relations indexed by e. A second type of subset indexed by i is
formed with these feedback relations if the output voltage of each is inverted before
inputed to the other. Each output is multiplied by a gain coefficient kj; where
V; = k;P; and 0.2<k;<2.0 to optimize stability and sensitivity. Four types of internal

connections are identified: k,, ,k,; ,k;, and k; so that the equations for the connected
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Figure (5.1.7): Sigmoid curves representing the non-linear relation between axonal firing
rates (ordinate) and dendritic current (abscissa) at trigger zones of OB and PC neurons.
The curve was derived in part from the Hodgkin-Huxley equations. It was evaluated by
fitting it to measurements of the normalized probability of firing of OB and PC neurons
conditional on the amplitude and time of occurrence of the EEG. The set of curves
shows 3 levels of background, steadystate activity (triangles), reflecting the change in the
curve with increasing motivation from rest (lowest curve). The sigmoidal shape of the
curve reflects mechanisms that are of major importance for stabilizing normal brain func-
tion (from Freeman, 1986).
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subsets take the form
N
F(Ve1j) = koo Pogj —kig(Pirj +Pigj) tkee ZPe1i +1; (5.1.9)
k#j
F(Vez,j)-.= keePel,j -k, P; L.j (5.1.10)
F(Viy,j) = keiPpyj — kiiPiyj (5.1.11)
| N
F(Viyj) = ki(Poyj +Pegj) —kiPiaj + ki TPy x (5.1.12)
k#j

where /; is the output of the j* subset.

When an arbitrarily small input pulse is received at the receptor, the model system
generates continuing activity that has the statistical properties of the background EEG of
resting animals. A comparison of the model output is compared with that of a rat in Fig-
ure (5.1.8). Freeman (1987) comments:

"Close visual inspection of resting EEGs and their simulations show that they
are not indistinguishable, but statistical procedures by which to describe their
differences have not yet been devised. Both appear to be chaotic on the basis
of the properties listed, but the forms of their chaotic attractors and their
dimensions have not yet been derived.”’

Although true when it was made this observation is now only partly correct since a
number of methods have been devised to determine the dimensions of the underlying
chaotic attractors. For example the method of Layne et. al. (1986) could be applied to
the simulation to find if the dimension is similar to that of the EEG time series. One can-

not rely on the visual appearance of this trace for making comparisons.

The utility of chaotic activity in natural systems have by now been pointed out by a
number of scientists, there being four or five categories depending on one’s discipline. In
the olfactory neural context Freeman (1987) points out that chaos provides a rapid and
unbiased access to any member of a collection of latent attractors, any of which may be
selected at random on any inhalation depending on the oifactory environment. He goes

on to say:

"The low-dimensional ‘‘noise’’ is ‘‘turned off’’ at the moment of bifurcation
to a patterned attractor, and it is ‘‘turned on’’ again on reverse bifurcation as
the patterned attractor vanishes. Second, the chaotic attractor provides for glo-
bal and continuous spatiotemporally unstructured neural activity, which is
essential to maintain neurons in optimal condition by preventing atrophy of

pdros.351.chapter.5.1 o 3-10-'88




.203 -

EEG

/Wv{‘\ [ h".vﬂ | N
OB . ", M‘W Mh‘ NW‘"W W \/W*‘W*"’h
LV Ny

§ W‘WW‘VMWWMM

MODEL

Figure (5.1.8): Examples of chaotic background activity generated by the model, simu-
lating bulbar unit activity and the EEGs of the OB, AON and PC.
Qm =5.0, kME = 1'5’kEG =067’kEP = l.O,kPM =0.1,km = 1’kEA = l.s,ku = IO,kAP =1.
The top two traces are representative records of the OB and PC EEGs from a rat at rest
breathing through the nose (from Freeman, 1986).
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disuse in periods of low olfactory demand. Third, one of the patterned attrac-
tors provides for responding to the background or contextual odor complex. It
appears that a novel odor interferes with the background and leads to failure of
convergence to any patterned attractor, and that chaotic OB output may then
serve by default to signal to the PC the presence of a significant but
unidentified departure form the environmental status quo detected by the
receptors. The correct classification of a novel order by this scheme can occur
as rapidly and reliably as the classification of any known odor, without requir-
ing an exhaustive search through an ensemble of classifiable patterns that is
stored in the brain. Fourth, the chaotic activity evoked by a novel odor pro-
vides unstructured activity that can drive the formation of a new nerve cell
assembly by strengthening of synapses between pairs of neurons having highly
correlated activity (the Hebb rule in its differential form). Thereby chaos
allows the system to escape from its established repertoire of responses in
order to add a new response to a novel stimulus under reinforcement."”

These speculations have been narrowly focused on the dynamics of the olfactory
system, but they are easily generalizable to a much broader neuronal context. For exam-
ple we have noted elsewhere in this report how chaos may be an integral part of the
learning process. It has also appeared that the dynamics in other complex systems mani-
fest chaos in order to ensure adaptability of the underlying process. Conrad (1986)
denotes five possible functional roles for chaos. The first is the generation of diversity as
in the prey-predator species where the exploratory behavior of the animal is enhanced.
The second is the preservation of diversity in which the diversity of behavior is used by
the prey to act unpredictably and thereby elude being the supper for the predator. The
third possible role of chaos is maintenance of adaptability that is to disentrain processes.
In populations this would correspond to keeping a broad age spectrum. The fourth is the
interaction between population dynamics and gene structure (cross-level effects). Chaos
on the genetic level would contribute to the diversity and adaptability on the population
level. Finally, the dissipation of disturbances is achieved by the sensitivity of orbits on
the chaotic attractor to initial conditions. In this way the attractor acts as a heat bath for

the system and ensures its stability.
5.2 Epilepsy, the reduced dimension

One of the more dramatic results that has been obtained in recent years has to do
with the relative degree of order in the electrical activity of the human cortex in an
epileptic human patient and in normal persons engaged in various activities [cf. Figure
(5.0.2)]. Babloyantz and Destexhe (1986) used an EEG time‘ series from a human patient
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3

undergoing a ‘‘petit mal’’ seizure to demonstrate the dramatic change in the neural
chaotic attractor using the phase space reconstruction technique. Freeman (1986) has
induced an epileptic form seizure in the prepyriform cortex of cat, rat and rabbit. The
-seizures closely resemble variants of psychomotor or petit mal epilepsy in humans. His
dynamic model, discussed in the preceding section, enables him to propose neural
mechanisms for the seizures, and investigate the model structure of the chaotic attractor
in transition from the normal to the seizure state. As we have pointed out, the attractor is
a direct consequence of the deterministic nature of brain activity, and what distinguishes
normal activity from that observed during epileptic seizures is a sudden drop in the
dimensionality of the attractor. Babloyantz and Destexhe (1986) determine the dimen-
sionality of the brain’s attractor to be 4.05%0.5 in deep sleep and to have the much lower
dimensionality of 2.05%0.09 in the epileptic state. There is, however, some controversy

over the values of these dimensionalities and the associated errors. as we discussed in the

preceding section.

Epileptic seizures are manifestations of a characteristic state of brain activity that
can and often does occur without warning. The spontaneous transition of the brain from a
normal state to a epileptic state may be induced by various means, but is usually the
result of functional disorders or lesions. Such a seizure manifests an abrupt, violent, usu-
ally self-terminating disorder of the cortex. One can think of it as an instability induced
by the breakdown of neural mechanisms that ordinarily maintain the normal state of the
cortex and thereby assure its stability. In the prew)ious section we argued that the normal
state is described by a chaotic attractor. We now find that the seizure state is also a
chaotic attractor, but with smaller dimension. Babloyantz and Destexhe (1986) were
concerned with seizures of short duration (approximately five seconds in length) known
as ‘‘petit mal.”” This type of generalized epilepsy may invade the entire cerebral cortex
and shows a bilateral symmetry between the left and right hemispheres. As is apparent in
the EEG time series in Figure (5.2.1) there is a sharp transition from the apparently noisy
normal state to the organized, apparently periodic epileptic state. The transition from the
epileptic back to the normal state is equally sharp. A sequence of stimulations applied to
the lateral olfactory tract (LOT) will induce seizures when the ratio of background
activity to induced activity exceeds a critical value (Freeman, 1986). In Figure (5.2.2)
the regular spike train of the seizure induced by the applied stimulation shown at the left

is depicted. These data are used to define the phase space variables
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Figure (5.2.1) (a) EEG recording of a human epileptic seizure of petit mal activity.
Channel 1 (left) and channel 3 (right) measure the potential differences between frontal
and parietal regions of the sclap, whereas channel 2 (left) and channel 4 (right)
correspond to the measures between vertex and temporal regions. This seizure episode,
lasting 5 sec. is the longest and the least noise-contaminated EEG selected from a 24-hr
recording on a magnetic tape of a single patient. Digital PDP 11 equipment was used.
The signal was filtered below 0.2 Hz and above 45 Hz and is sampled in 12 bits at 1200
Hz. (b) One pseudocycle is formed from a relaxation wave. (From Babloyantz and
Destexhe, 1986).
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Figure (5.2.2) The last 1.7 s is shown of a 3-s pulse train to the LOT (10 V, 0.08 ms,
10/s), with decrement in response amplitudes begining at 0.7 s before the end of the
train. Seizure spike trains begin uncoordinated in both structures and settle into a repeti-
tive train at 3.4/s with the PC spike leading by 25 ms both the OB spike and EMG spike
from the ipsilateral temporal muscle. (From Freeman, 1986).
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system in both normal and epileptic states.

In Figure (5.2.3) is depicted the projection of the epileptic attractor onto a two-
dimensional subspace for the four different angles of observation. Babloyantz and
Destexhe (1986) interpret this attractor to be the spiral or screw chaos of Réssler (1979).
Freeman (1986) did not identify the attractor he observed with any of the canonical
forms, but he was able to capture a number of the qualitative features of the dynamics
with calculations using his model. It is clear in Figure (5.2.4) that the attractor for a rat
during seizures is well captured by the model dynamics. He acknowledged that the
unpredictability in the detail of the simulated and recorded seizure spike trains indicate

that they are chaotic, and in this regard agree with the conclusion of Babloyantz and
Destexhe. Note the similarity in the attréctor depicted in Figure (5.2.4) with that for the
heart in Figure (4.4.6¢). Let us see how the latter authors calculated the dimension of the
reconstructed attractor using the limited data sample available in the single realization of
human epileptic seizure.

In Figure (5.2.5) is recorded the In C (r) versus In r epileptic data for six values of
m. If C(r)~r" we would expect a straight line in this plot, with slope v. In practice,
however, the line will never be perfectly straight for all /n r because of the finite size of
the vectors in the multi-dimensional reconstruction. There is usually a smaller region
over which a straight line may be fitted, and a dimension calculated. Mayer-Kress and
Layne (1987) point this out as a major drawback of this algorithm. It is not easy to say if

the ‘‘dimension’’ determined from this limited domain is significant or not.

In Figure (5.2.6) these results are used to determine the dependence of the correla-
tion dimension on the embedding dimension and are compared with the white noise
results. We see here a clear indication that the epileptic state possesses a chaotic attrac-
tor and therefore should have a deterministic dynamic representation in either three of
four variables. The low dimensionality of the attractor is indicative of the extreme coher-

ence of the brain during an epileptic seizure relative to normal brain activity.

In Section 4.2 we discused how certain neural activity could be modeled by a
chaotic attractor. It is possible to speculate that such chaotic neural activity could be
benign or even beneficial. Rapp et. al. (1987) point out the possible utility of such neural

activity in searching memory and in the early stages of decision making. The arguments
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Figure (5.2.3): Phase portraits of human epileptic seizure. First, the attractor is
represented in a three-dimensional phase space. The figure shows two-dimensional pro-
jections after a rotation of an angle o around the V(r) axis. The time series is con-
structed from the first channel of figure 1 (n =5000 equidistant points and T=19Ar).
Nearly identical phase portraits are found for all 1 in the range from 17Az to 25At and
also in other instances of seizure (from Babloyantz and Destexhe, 1986).
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Figure (5.2.4) Comparison of the output of the trace from granule cells (G) in the model
(above) with the OB seizure from a rat (below), each plotted against itself lagged 30 ms
in ime. Duration is 1.0 s; rotation is counterclockwise. (From Freeman, 1986).
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Figure (5.2.5): The logarithm of the correlation integral is plotted versus that of the
separation r, m =6x10° and T=19Ar (from Babloyantz and Destexhe, 1986).
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Figure (5.2.6) Dependence of the correlation dimension v on the embedding dimension

m for a white noise signal (o) and for the epileptic attractor (O) with T=19Az. The
saturation toward a value v, is the manisfestation of a deterministic dynamics. (From
Babloyantz and Destexhe, 1988).
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rest on the recent quantitative results in control theory which illustrate how certain com-
plex systems can be functionally optimized through the introduction of noise (Kolata,
1984). On the other hand, most efforts have focused on the deleterious effects of chaos,
see eg. the notion of dynamic diseases, Mackey and Glass (1977), in particular the possi-
ble relationship between neural chaos and failures of neural regulation. There have been
a number of suggestions on the possible role for chaos in epileptogenesis (see Rapp et. al.
(1987) for a list of references). They make the point that because of the decrease in
dimensionality that a seizure may not itself be chaotic, i.e., there is a decrease in the
disorder of the brain activity. ‘‘The seizure might serve as a corrective resynchronizing
response to the loss of coherence of the brain activity that, in turn, is the result of chaotic

neural behavior.”’
5.3 Potential Chaos is not Evoked

The results of calculations of the degree of complexity of the EEG time series dis-
cussed in the preceding section suggests that the erratic signals from the brain are core-
lated with the cognitive activity of the patient. The complex electrical signal, its change
in shape and amplitude are related to such states as sleep, wakefulness, alertness,
problem-solving, and hearing as well as to several clinical conditions (Bullock, Orkand
and Grinnel, 1981) such as epilepsy (Principe and Smith, 1982; Siegel, Grady and
Miraky, 1982) and schizophrenia (Itil, 1977). This in itself is not a new result, it has been
known for some time that brain activity responds in a demonstrable way to external
stimulation. The direct or peripheral deterministic simulation could be electrical, optical,
acoustical, etc. depending on the conditions of the experiment. This induced change in
the brains’ electrical activity is called an Evoked Potential. One can distinguish between
an evoked potential and the spontaneous electrical activity of the brain in the following
way (Chang, 1959):

**a) It bears definite temporal relationship to the onset of the stimulus. In other

words, it has definite latent period determined by the conduction distance

between the point of stimulation and the point of recording. b) It has a

definite pattern of response characteristic of a specific system which is more or

less predictable under similar conditions.”’

In another context the evoked potential is also called the event-related brain poten-
tial (ERP). The ERP, like the EEG is a series of voltage oscillations in the brain that are

recorded on the scalp, but differs in that it is a transcient response to a discrete stimulus
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event (Babloyantz and Destexhe, 1986). This characteristic of neural response to the
environment has been proposed as an indicator of mental workload, in part because it is a
noninvasive measure of cognitive information processing. Mental workload has been
viewed as equivalent to the arousal level of the subject; it has been defined as a person’s
subjective experience of cognitive effort; it has been measured as the time taken to per-
form a task and conceptualize as the demand imposed upon the limited information-
processing capabilities of the subject (Kramer, Wickens and Donchin, 1983; Wickens,
1979) describes workload in terms of the interaction between the difficulty of the task
performed and the relative overlap of the common information-processing resources.
The term ‘‘resource’’ is used here to describe instruments inherent in the organism that
must be used in performing tasks and, like other such concepts, is a hypothetical con-
struct derived to account for variance in performance. In a sequence of experiments,
which we discuss below, the ERP measures were found to reflect systematic differences
in task workload and to vary closely with reaction time measures (Isreal, Wickens, Ches-
ney and Donchin, 1980). The class of experiment is one in which a perceptual load is
measured by monitoring a simulated air-traffic-control display for discrete events (Don-
chin, 1975; Isreal et al, 1980; Isreal, Chesney, Wickens and Donchin, 1980; Wickens,
Kramer, Vanasse, and Donchin, 1983). The subjects performed a tracking task in which
discrete displacements of the tracking cursor are used to elicit ERPs, with a concurrent
secondary task of auditory stimuli also generating ERPs (Isreal et al, 1980; Wickens et al,
1983). It is found that the information-processing resources allocated to the primary and
secondary tasks are reciprocal, ie., as the allocation of resources to the primary increases
those to the secondary decrease, thereby providing quantitative support for the casual
observation that when the human mind is occupied with one task it often lacks the capa-

city to perform others.

As stated, the allocation of information processing resources was measured
indirectly by assigning to an operator engaged in a primary task, a secondary task that
must be executed concurrently with it. The primary task in this collection of experiments
was to track a target on a video screen using a joy-stick-controlled cursor, while main-
taining a correct count of the number of occurrences of one tone from a Bernoulli (ran-
dom) sequence of tones (secondary task). The amplitude of the positive component of
the ERP elicited by these tones 300ms after the initiation of a given tone (P300) was then

examined to assess the sensitivity to the processing demands of the primary task.
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Wickens, Isreal and Donchin (1977) demonstrated that the amplitude of the P300 com-
ponent was attenuated by the load imposed by the concurrent tracking task. The work-
load was varied in these experiments in a number of ways: varying the number of "air-
craft” tracked by the subject (Isreal et al, 1980a); controlling the directional regularity of
the target by randomly changing the size of the step in the movement of the aircraft as
well as its direction (Wickens et al, 1983); varying the relationship between the move-
ment of the joy-stick and that of the cursor (Wickens et al; 1983); randomly moving the
cursor (Isreal et al, 1980b); as well as others (Kramer et al, 1983).

It is not our intent to fully review the extensive results obtained by these scientists
(Kramer et al, 1983; Donchin, 1975; Isreal et al, 1980a), but rather to give a typical result
and discuss its possible utility in the context of the reconstruction technique. Consider
the tracking experiment conducted by Kramer (1983) in which the subject must initially
superpose the cursor so as to "capture” the target [cf. Figure (5.3.1)]. The control dynam-
ics of the joy-stick consisted of two linear segments to yield the system output X (¢ ):

t t v
X(@) =(Q -a)ju(:')d:' +ajd:’ju(t")d:” (5.3.1)
0 0 0

where u(r) is the instantaneous stick position and a is the level of difficulty. A first
order system is given by a =0 which has relatively easy tracking; the more difficult trials
were conducted with @ =0.15, i.e., a linear combination of first and second order dynam-
ics. The average ERPs elicited by the counted tones are depicted in Figure (3.5.2).
There is a clear separation in the ERP amplitude of the waveforms in the vicinity of 400
ms that can be attributed to the introduction of the tracking tasks and to the increase in
difficulty of the dynamics. Donchin, Ritter and McCallum (1978) have suggested that the
P300 wave form is a manifestation of neuronal activity that is involved whenever indivi-
duals update their internal model of the environment. Thus the P300 is a promising can-
didate as an index of a selective aspect of cognitive workload that is related to the updat-
ing of an interval model of the task structure. If this is the case then the allocation of pro-
cessing resources to the tracking task would attenuate the ERP of the counting task, the
attenuation increasing with increasing certain kinds of difficulty of the primary task and
not with others, ie. with those aspects that require an updating of the interval template of
the subject (Kramer et al, 1983; Isreal et al, 1980a). In short (Kramer et al, 1983): “‘the
P300 amplitude reflects only those aspects of performance that are related to updating the
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Figure (5.3.1): The temporal sequence of the target acquisition task (from upper right to
lower left) (from Kramer, 1983).
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Figure (5.3.2): Top parietal grand averages ERPs (11 subjects) elicited by counted tones
in Experiment 1. The upper curves after 90 practice episodes, the lower curves after 300

practice episodes. (From Kramer, 1983).
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template in memory, and thus will not necessarily covary with other measures of

secondary-task performance.’’

These results indicate that components of the ERP, specifically P300, can be used to
quantify the resource allocation of complex cognitive tasks. More recently experiments
have been done to exbiore the degree to which these results could be generalized to com-
plex real-world tasks (Kramer, Sirevaog and Braune, 1987). Student pilots flew a series
of instrument flight rule (IFR) missions in a single-engine, fixed based simulator, and
concurrently discriminated between two tones differing in frequency. The difficult flight
was associated with increased deviations from the command altitude, heading and
glideslope as well as with high subjective effort ratings. The P300 components of the
ERP successfully discriminated among levels of task difficulty, as before, decreasing in

amplitude with increased task demands (Kramer et al, 1987).

Figure (5.3.3) presents the grand average ERPs elicited by the target tones in the
single-and dual-task conditions. It is clear that the same general features evident in Fig-
ure (5.3.2) arise here, that is to say, the P300 wave form attenuates with increasing task
difficulty. In this study the intermediate amplitude case was when the students were
flying with no wind, turbulence, or subsystem failures; and smallest with high winds, tur-
bulence, and a heading indicator failure. Kramer et al. (1987) conclude that these results
provide preliminary support for the assertion that components of the ERP can provide
sensitive and reliable measures of the task demands imposed upon operators of complex,

real-world systems.

It would also be of interest to apply the phase portrait reconstruction technique to
the raw ERP data pieced together to form one long time series. In this way we could
determine if the dimensionality of the resulting attractor provides as reliable a measure of
the mental workload as the P300 waveform. We do not have this data available at this
time so we are unable to carry out this analysis. However a number of other studies in
which EEG data was collected while the subjects performed specified tasks has been pro-

cessed and these we discuss in the following Section.
5.4 Task-related dimensions

We have observed that in normal brain activity the visual appearance of the EEG
time trace changes markedly as one changes states from quiet with eyes open, to quiet

with eyes closed, through the levels of sleep to the state of rapid eye movement. In

pdros 351 .chapter. 54 3-15-88




-219-

PNy moﬂ

1
i
I
: S5pv
'
'
'
i

—\\~ T ——
~——— Single Task

—— Easy Mission

mesesess Ditficult Mission
1 1 1 | 1 1

100 300 500 700 900 1100
ms

Ob-—-vroemee—o

Figure (5.3.3): Parietal grand average ERPs overplotted for the tone discrimination task
alone and for both of the flight missions (from Kramer, et al., 1987).
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Figure (5.0.2) these changes in the time trace are obvious, but the accompanying phase
space portraits are not easy to read. It might become clear after a certain amount of
inspection that the attractors depicted in (c) and (d) are not so tightly constrained as those
of (a) and (b), but to make this impression quantitative requires additional effort. In
Table 5.1 the correlation dimension has been recorded for various states of the brain
when it is not engaged in cognitive activity perhaps with the exception of the epileptic
seizures. The dimensionality of the EEG for the simple situation of being quiet, awake,
but with eyes open or closed varies form 5 to infinity. Thus the absolute dimension does
not seem to be a reliable indicator of the cognitive state, however, we will see that by
using individuals as their own control we can reliably indicate the changes in their cogni-

tive state.

In Table 5.2 we record thc'correla»tion dimension for one of the important applica-
tions of EEG analysis and that is anesthesia, where a reliable monitoring and control of
its depth is still a problem which causes many deaths each year. Mayer-Kress and Layne
(1987) determine that the ‘‘dimension’’ is not a sensitive indicator of the transition from
light ot medium anesthesia. They also find, unlike the results of Babloyantz et al
(1985,1986) in Table 5.1, there seems to be no significant changes in dimension for the
various stages of natural sleep, (cf. Table 5.3) they do find, however, that the mutual
information content varies significantly with different sleep stages. Recall that Mayer-
Kress and Layne (1987) use the first minimum in the mutual information content to

determine the delay in the phase space reconstruction of the EEG attractor.

It is difficult to assess the significance of the dimensions found by Watt and Hamer-
off (1987) due to their large variances. However the significance of the dimension of a
certain excitatory anesthetic (fluroxene) seems to be better established. The dimension,
measured at the lead P3-O1 was reported to increase from 4.3 + 2.2 before anesthesia to
8.0 + 3.8 during medium fluroxene anesthesia. Further refinements of these calculations
are discussed in Mayer-Kress, Yates, Benton, Deidel, Tirsch, Poppl and Geist (1987), in
which the results are shown to display a delicate dependence on details especially at high.
values of the dimension. The importance of all the additional analysis is the consistent
finding that the dimensionality of the EEG time series increases from the normal to the
anesthetized state. This result supports the conjecture that although the absolute dimen-
sion might be hard to determine in biological systems, it might still be a valuable tool for

detecting relative changes in the complexity of the dynamics (Mayer-Kress et al, 1987).
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Table 5.2 - More chaos in the brain

The data in this table are originally form Watt and Hameroff (1986) and Mayer-Kress
and Layne (1987). They calculate the correlation dimension of EEG time series when

the subject is under the influence of anesthesia.

state of the brain lead rate (Hz) t(msec) time embedding ‘‘dimension”

; sampling delay total maximal
1
| (sec) dimension

Watt and Hameroff (1986)

quiet. awake, eyes closed C3-P3 300 17 4 6 21520
isoflurane anesthesia C3-P3 300 17 4 6 207+20
thiopental anesthesia C3-P3 300 17 4 6 1.90+£2.0

Mayer-Kress and Layne (1987)
i fluroxene anesthesia (all four) 100-500 10-40 10-30 20 8.0+6.0
3-10-'88

|
i pdros.351.table.5.2




T v T

-222-
Table 5.3 - Still more chaos in the brain

The data in this table are originally from C. Ehlers and were published and processed by
Mayer-Kress and Layne (1987). They give the correlation dimension of EEG time series
when the subject is‘c—:ompleting a number of cognitive tasks. The sampling rate is 512
Hz, the delay time is in the interval 10 ms < T < 40 ms, the total time is in the interval 10

sec <t < 30 sec and the maximal embedding dimension is 20.

quiet, awake and lead ‘‘dimension’’
eyes closed i P3-0O1 51x54
eyes closed P4-02 50+4.0
eyes open, no task P3-0O1 8.6%5.1
eyes open, no task P4-02 8.7x5.4
eyes closed, verbal memory P3-01 63+2.9
eyes closed, verbal memory P4-02 64133
eyes closed, visual memory P3-01 6.1%+5.5
eyes closed, abstraction P3-0O1 60+34
eyes closed, abstraction P4-02 64+3.8
eyes closed, word association P3-01 59+35
eyes closed, word association P4-02 55%+3.8

sleep

onset C3-Al 6.816.1
stage 4 C3-Al 59+44
REM C3-Al 64+5.1
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Additional evidence for this conjecture is displayed in Table 5.3 where Mayer-Kress
and Layne (1987) use the data of Ehlers to calculate the correlational dimension for a
number of cognitive states. We can see here a clear progression of the dimension magni-
tude from quiet, awake, eyes closed ( ~ 5) to quiet, awake, eyes closed using verbal
memory ( ~ 6.3). Notice also that the variance in dimension is decreased as the state of
the brain changes from no task to one involving cognitive activity. The trend in these
data seems to indicate that the dimension of the EEG time series is closely tied to the
cognitive activity of the brain. Further, there is a distinct ordering of the mental task per-
formed and the magnitude of the dimension. It would be of interest to have an indepen-
dent measure of the degree of difficulty of each of these tasks such as was available for
fhe evoked response potentials discussed in the preceding section. In this way we would
be able to verify the conclusion suggested by the results in Table 5.3. This conclusion is
that the lowest dimension is for the resting state of a quiet, awake subject with eyes
closed, the highest dimension is for the quiet, awake subject with eyes open and the

dimension increases with cognitive task difficulty.

To review, we have the calculated correlation dimension of EEG time series for a
subject performing a number of cognitive tasks of varying levels of mental workload.
What we do not have is a calculated correlational dimension for the above ERPs. We
recall that the ERPs were obtained by having the subject count the number of specified
tones while engaged in a primary task such as tracking a target. The P300 waveform of
the control ERP is shown as a solid curve in Figufc (5.3.2), ie. this waveform is obtained
when the subject is counting but there is no primary task. Rapp et al (1987) have con-
ducted a pilot study to determine the effect of cognitive activity on the alpha wave meas-
ured at electrode site O,. The subject counted backwards from 300 in steps of 7. The
number 7 was chosen in order that the subject could not perform the operation in a rote
fashion. This pilot study is the first one designed to compare the fractal dimension in the

rest state of the brain and the state of cognitive activity.

As we mentioned, the computer has been used to process EEG time series data for
quite a while and the development of the techniques for displaying computer results in a
form that facilitates the interpretation of EEG recoreds has an equally long history (Kto-
nas, 1983). Some of the clinical areas in which this has been done are epilepsy (Principe
and Smith, 1982; Siegel et al., 1982) and schizophrenia (Itil, 1977) but as pointed out by
Rapp et al. (1987) these programs have had limited effect on clinical practice. They
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suggest this because the earlier efforts have centered on spectral analysis and its variants,
and they speculate that harmonic analysis does not provide a neurologically meaningful
spectral analysis measure of brain electrical activity. They rightly point out that before
one can determine if the correlation dimension is any more meaningful than spectral
measures it must be determined for large amounts of data from normal controls and

defined patient population.

Using an argument based on a noise-corrupted sine wave they decided to measure
50 points per cycle for 80 cycles, giving 4000 data points. As the human alpha rhythm is
approximately 10 Hz, this gives a sample interval of 2 ms. Figure (5.4.1) gives the plots
for in C,, (r) versus /n r for embedding dimensions 15 to 20, as well as the slope of these
curves versus /n C,,. It is clear from the latter figure that there is a plateau region
corresponding to the dimension value 2.4+0.2. The sensitivity of the dimension to the
number of data points used in the calculation was tested. Calculations using the third one
thousand data points gave the same value of the dimension, however the degree of
dispersion in the plateau is substantially decreased with the addition of more data. Rapp
et al stress that a systematic investigation is required to determine the data needed for the
reliable calculations of EEG dimensions. Also, as noted earlier, the non-stationarity of

the EEG time series in a given individual over time should be determined.

The pilot study yields the data depicted in Figure (5.4.2) in a In C,,(r) versus a Inr
plot. The degree of dispersion around the plateau is greatly increased above that of the
control and a dimension of 3.0£0.2 is obtained, to be compared with 2.4 +0.2 from Fig-
ure (5.4.1). A secondary plateau is also suggested in Figure (5.4.2), this one corresponds
to the higher dimension of 3.8. However the authors note that the data does not permit a
clear resolution of this object. In Figure (5.4.3) we put the results of the control and pilot
study on the same slope versus /n C,, graph (results provided by P. Rapp). The counting
task is clearly greater than that of the control for all values of the correlation integral.
dimensionality of the EEG record for the individual engaged in the In Figure (5.4.4) the
Poincaré maps from both the control and pilot study are depicted and a remarkable differ-
ence is observed. The initiation of mental workload disrupts the structure of the resting
Poincaré map, the tightly correlated points in the swirls of A and B are apparently ran-
domized in C and D. Such an effect would, of course, be observed in such a low-

dimensional projection of an attractor if the dimension of the attractor were increased.
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Figure (5.4.1): Dimension calculation of the data for embedding dimensions 15 to 20.

The values of Cran from 2 to 10 in steps of .1 and a 5-point slope calculation was used to
determine v. The value of the dimension is estimated to be 2.4+.2.
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Figure (5.4.2) Calculation of the dimension using the first 1500 data points of the signal
for embedding dimension 15 to 20. The value of € ran from 2 to 10 in steps of .1. The
estimated value of the dimension is 3.0+.3. (From Rapp, Zimmerman, Albano, de Guz-
man, Greenbaum and Bashore, 1987).
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Slope, dInC,(r)/dIn(r) versus InC,(r) generated by two electroen-
cephalographic time series. The lower curve corresponds to an EEG recording at site 0,
obtained from a normal, adult subject. The signal was digitized at 500 Hz. A total of ten
thousand data points were used. During the recording, the subject was resting comfort-
ably and his eyes were closed. The upper curve corresponds to ten thousand points
recorded from the same subject at the same site and at the same frequency. In this latter
case, the subject performed mental arithmetic during the recording. In both computa-
tions the calculations of the correlation integral was preceded by a singular value decom-

position. (From P. Rapp, 1988, private communication).

Figure (5.4.3)
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Figure (5.4.4) Delay maps plotting the points [X (/),X (j+Delay)]. (A) The first 1000
points of the signal for eyes closed, resting, (B) The same signal as A with Delay=10.
(C) The first 1000 points of the signal in Figure (5.4.3) (eyes closed, mental arithmetic)
Delay = 5. (D). The same signal as in C with Delay = 10. (From Rapp et al., 1987).
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